Newton's Principia Mathematica


    7.1.1 • Public • Published

    glslify stability

    npm version downloads travis

    A node.js-style module system for GLSL!

    This module contains:

    • glslify's command-line interface (CLI)
    • glslify node/electron interface
    • browserify transform

    It forms one of the core components of the ecosystem, allowing you to install GLSL modules from npm and use them in your shaders. This makes it trivial to piece together different effects and techniques from the community, including but certainly not limited to fog, noise, film grain, raymarching helpers, easing functions and lighting models.

    A full list can be found on the packages list under the "Shader Components" category.

    Because glslify just outputs a single shader file as a string, it's easy to use it with any WebGL framework of your choosing, provided they accept custom shaders. Integration is planned for three.js and pex, with more on the way! Open an issue here if you'd like to discuss integrating glslify with your platform of choice.

    If you're interested in playing around with glslify, you should check out it's a fragment shader sandbox similar to Shadertoy and GLSL Sandbox with built in support for glslify.


    var glsl = require('glslify')
      #pragma glslify: noise = require('glsl-noise/simplex/3d')
      precision mediump float;
      varying vec3 vpos;
      void main () {
        gl_FragColor = vec4(noise(vpos*25.0),1);

    Module API

    var glsl = require('glslify')

    var src = glsl`shader source...`

    Compile a shader inline using glsl as a tagged template string function.

    var src = glsl(file, opts)

    var src = glsl(shaderSource, opts)

    Compile a shader using an inline shader string or a file name.

    These are convencience methods provided that call glsl.compile() or glsl.file() accordingly. These methods are also provided for backwards compatibility with the previous < 6 interface.

    Optionally provide:

    • opts.basedir - directory to resolve relative paths
    • opts.transform - an array of transform functions, transform module name

    var src = glsl.compile(src, opts)

    Compile a shader string from a string src.

    • opts.basedir - directory to resolve relative paths in src
    • opts.transform - an array of transform functions, transform module name strings, or [trname,tropts] pairs

    var src = glsl.file(filename, opts)

    Compile a shader from a filename.

    • opts.basedir - directory to resolve relative paths in src
    • opts.transform - an array of transform functions, transform module name strings, or [trname,tropts] pairs



    To install the command-line interface, install glslify globally like so:

    npm install -g glslify

    To install glslify for use as a browserify transform, you should install it locally instead:

    npm install glslify

    Getting Started


    The CLI can take a file as its first argument, and output to a file using the -o flag:

    glslify index.glsl -o output.glsl

    It can also read input from stdin and output to stdout:

    cat index.glsl | glslify > output.glsl

    Browserify Transform

    If using browserify from the command-line, simply pass glslify in as a transform using the -t/--transform flag:

    browserify -t glslify index.js -o bundle.js

    Alternatively, you may include glslify as a browserify.transform in your package.json file:

      "name": "my-app",
      "dependencies": {
        "glslify": "^2.0.0"
      "browserify": {
        "transform": ["glslify"]

    When writing your app, you should be able to require and call glslify the same as the node/electron interface, like so:

    // index.js
    var glsl = require('glslify')
    var src = glsl.file('./shader.glsl')

    or using tagged template strings:

    var glsl = require('glslify')
      #pragma glslify: noise = require('glsl-noise/simplex/3d')
      precision mediump float;
      varying vec3 vpos;
      void main () {
        gl_FragColor = vec4(noise(vpos*25.0),1);

    Your glslify calls will be replaced with bundled GLSL strings at build time automatically for you!

    // index.js
    var src = "#define GLSLIFY 1\n\nprecision mediump float; ..."

    Webpack Loader

    You can use the glslify-loader module to bundle shaders through glslify with Webpack. Check out the repository for further information.

    Babel Plugin

    You can use glslify-babel as a Babel plugin. This allows you to use all ES6 features with glslify, including import statements and tagged template strings. Check out the repository to learn more.

    💡 A Note on Babel Import/Export

    If you are using Babel presets to transpile ES6 import/export to CommonJS require() statements, you may run into issues with glslify. This is because Babel mangles the output into source code that isn't easy to statically analyze. One solution is to directly map glslify to CommonJS statements, using babel-plugin-import-to-require in your .babelrc.


    Installing a GLSL Module

    Much like plain JavaScript modules, GLSL modules are stored on npm. The main difference is that GLSL modules contain an index.glsl file instead of an index.js. Generally, these modules start with glsl- in their name.

    To install glsl-noise in your current directory:

    npm install glsl-noise

    This will download glsl-noise and any of its dependencies, placing them in a node_modules directory for glslify to use.

    Importing a GLSL Module

    You can import a module using the following #pragma syntax:

    #pragma glslify: noise require(glsl-noise/simplex/2d) 
    void main() {
      float brightness = noise(gl_FragCoord.xy);
      gl_FragColor = vec4(vec3(brightness), 1.);

    Shader dependencies are resolved using the same algorithm as node, so the above will load ./node_modules/simplex/2d.glsl from the shader's directory.

    The above example would result in the following output:

    #define GLSLIFY 1
    // Description : Array and textureless GLSL 2D simplex noise function. 
    //      Author : Ian McEwan, Ashima Arts. 
    //  Maintainer : ijm 
    //     Lastmod : 20110822 (ijm) 
    //     License : Copyright (C) 2011 Ashima Arts. All rights reserved. 
    //               Distributed under the MIT License. See LICENSE file. 
    vec3 mod289_1_0(vec3 x) {
      return x - floor(x * (1.0 / 289.0)) * 289.0;
    vec2 mod289_1_0(vec2 x) {
      return x - floor(x * (1.0 / 289.0)) * 289.0;
    vec3 permute_1_1(vec3 x) {
      return mod289_1_0(((x*34.0)+1.0)*x);
    float snoise_1_2(vec2 v)
      const vec4 C = vec4(0.211324865405187,  // (3.0-sqrt(3.0))/6.0 
                          0.366025403784439,  // 0.5*(sqrt(3.0)-1.0) 
                         -0.577350269189626,  // -1.0 + 2.0 * C.x 
                          0.024390243902439); // 1.0 / 41.0 
    // First corner 
      vec2 i  = floor(v + dot(v, C.yy) );
      vec2 x0 = v -   i + dot(i, C.xx);
    // Other corners 
      vec2 i1;
      //i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0 
      //i1.y = 1.0 - i1.x; 
      i1 = (x0.x > x0.y) ? vec2(1.00.0) : vec2(0.01.0);
      // x0 = x0 - 0.0 + 0.0 * C.xx ; 
      // x1 = x0 - i1 + 1.0 * C.xx ; 
      // x2 = x0 - 1.0 + 2.0 * C.xx ; 
      vec4 x12 = x0.xyxy + C.xxzz;
      x12.xy -= i1;
    // Permutations 
      i = mod289_1_0(i); // Avoid truncation effects in permutation 
      vec3 p = permute_1_1( permute_1_1( i.y + vec3(0.0, i1.y1.0 ))
        + i.x + vec3(0.0, i1.x1.0 ));
      vec3 m = max(0.5 - vec3(dot(x0,x0), dot(x12.xy,x12.xy), dot(,, 0.0);
      m = m*m ;
      m = m*m ;
    // Gradients: 41 points uniformly over a line, mapped onto a diamond. 
    // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287) 
      vec3 x = 2.0 * fract(p * C.www) - 1.0;
      vec3 h = abs(x) - 0.5;
      vec3 ox = floor(x + 0.5);
      vec3 a0 = x - ox;
    // Normalise gradients implicitly by scaling m 
    // Approximation of: m *= inversesqrt( a0*a0 + h*h ); 
      m *= 1.79284291400159 - 0.85373472095314 * ( a0*a0 + h*h );
    // Compute final noise value at P 
      vec3 g;
      g.x  = a0.x  * x0.x  + h.x  * x0.y;
      g.yz = a0.yz * x12.xz + h.yz * x12.yw;
      return 130.0 * dot(m, g);
    void main() {
      float brightness = snoise_1_2(gl_FragCoord.xy);
      gl_FragColor = vec4(vec3(brightness), 1.);

    Exporting a GLSL Module

    You can export a token from a module using the glslify: export pragma, like so:

    float myFunction(vec3 normal) {
      return dot(vec3(010), normal);
    #pragma glslify: export(myFunction) 

    This means that when you import this module file elsewhere, you'll get myFunction in return:

    #pragma glslify: topDot require(./my-function.glsl) 
    topDot(vec3(010)); // 1 

    If you check the output shader source, you'll notice that variables have been renamed to avoid conflicts between multiple shader files.

    You're not limited to exporting functions either: you should be able to export any GLSL token, such as a struct for reuse between your modules:

    struct Light {
      vec3 position;
      vec3 color;
    #pragma glslify: export(Light) 

    Passing references between modules

    Normally, glslify renames tokens to avoid conflicts across contexts. Sometimes, however, you want to reference the same thing from different contexts. The require function lets you explicitly fix reference names in order to guarantee that two different modules are talking about the same reference.

    Give some-module access to locally declared bar whenever it looks for foo internally:

    int bar;
    #pragma glslify: require('some-module',foo=bar,...) 

    It's important to make sure that bar has already been declared when you invoke #pragma glslify: require(...).

    Now time for some imagination. Let's pretend that we have some float[500] arrays that we'd like to be summed up.

    Here's a module that performs a reduction using a function map.

    float accumulate(float list[N]) {
      float z = 0;
      for (int i = 0; i<N; i++) {
        z = map(z,list[i]);
      return z;
    #pragma glslify: export(accumulate) 

    But notice that this module doesn't actually declare const int N; or define a function map anywhere. We have to make sure they are already defined when we require the module, and pass their names along with the require function:

    const int M = 500;
    float add(float a, float b){ return a+b; }
    #pragma glslify: sum500 require('./accumulator.glsl',N=M,map=add) 

    The accumulator has been imported and glslified into a sum function. We can also multiply all of the floats in some float[17] arrays the same way:

    const int M = 500;
    const int L = 17;
    float add(float a, float b){ return a+b; }
    float mul(float a, float b){ return a*b; }
    #pragma glslify: sum500 require('./accumulator.glsl',N=M,map=add) 
    #pragma glslify: product17 require('./accumulator.glsl',N=L,map=mul) 

    Glsl-hash-blur is an example of a module that uses this feature.

    Source Transforms

    Source transforms are a feature inspired by browserify, allowing you to modify your GLSL source at build time on a per-package basis. This is useful both for transpilation (e.g. converting from or to HLSL) or for making incremental improvements to GLSL syntax. (e.g. you can use glslify-hex to include CSS-style hex strings for colors in place of vec3s).

    There are three kinds of source transform:

    • Local transforms, the default. These are applied per-file, and only applied to a single package. If you're defining it via the CLI using -t it'll only apply itself to files outside of node_modules, but you can include it in package.json too: these will be applied only to that package without interfering with any of the package's parents or children.
    • Global transforms are applied after local transforms to every file, regardless of whether or not it's a dependency.
    • Post transforms are applied to the entire output file once it's been bundled. Generally, you want to reserve this for very specific use cases such as whole-shader optimisation.

    There are a number of ways to use a transform. Start by installing it in your project:

    npm install --save glslify-hex

    The preferred way to enable a transform is through your project's package.json file's glslify.transform property, like so:

      "name": "my-project",
      "dependencies": {
        "glslify-hex": "^2.0.0",
        "glslify": "^2.0.0"
      "glslify": {
        "transform": ["glslify-hex"]

    You may also include arguments to your transform as you would with browserify:

      "name": "my-project",
      "dependencies": {
        "glslify-hex": "^2.0.0",
        "glslify": "^2.0.0"
      "glslify": {
        "transform": [
          ["glslify-hex", {
            "option-1": true,
            "option-2": 42

    Note that this method is only available for local transforms.

    You may also specify transforms via the CLI:

    glslify -t 'local-transform' -g 'global-transform' -p 'post-transform'

    Or when using the browserify transform by including them as options like so:

    var glslify = require('glslify')
    glslify.file(__dirname + '/shader.glsl', {
      transform: [
        ["glslify-hex", {
          "option-1": true,
          "option-2": 42
        ["global-transform", { global: true }],
        ["post-transform", { post: true }]

    Further Reading

    glslify in the Wild


    See stackgl/contributing for details.


    MIT. See for details.


    npm i glslify

    DownloadsWeekly Downloads






    Unpacked Size

    36.9 kB

    Total Files


    Last publish


    • archmoj
    • bpostlethwaite
    • chrisdickinson
    • dfcreative
    • dy
    • erkaman
    • gre
    • hughsk
    • mattdesl
    • mikkoh
    • mikolalysenko
    • rezaali
    • rreusser
    • substack
    • tatumcreative
    • thibauts
    • vorg
    • wwwtyro
    • yoshuawuyts