127 packages found
Natural logarithm of the gamma function.
- stdlib
- stdmath
- mathematics
- math
- special function
- special
- function
- gamma
- factorial
- natural
- logarithm
- log
- ln
- lgamma
Natural logarithm of 10.
Base 2 logarithm of Euler's number.
Base 10 logarithm of Euler's number.
Conversions and calculations on a logarithmic scale
Natural logarithm of the cumulative distribution function (CDF) for a normal distribution.
- stdlib
- stdmath
- statistics
- stats
- distribution
- dist
- continuous
- probability
- cdf
- logcdf
- gaussian
- normal
- bell-shape
- logarithm
- View more
compute log(n!) of huge numbers
Natural logarithm of the cumulative distribution function (CDF) for a lognormal distribution.
- stdlib
- stdmath
- statistics
- stats
- distribution
- dist
- continuous
- probability
- cdf
- logcdf
- lognormal
- normal
- bell-shape
- logarithm
- View more
Natural logarithm of the beta function.
Evaluate the natural logarithm of the factorial function.
- stdlib
- stdmath
- mathematics
- math
- special functions
- special
- function
- factorial
- log-scale
- logarithm
- fact
- lfact
- factorialln
- combinatorics
- View more
Compute the natural logarithm of the binomial coefficient.
- stdlib
- stdmath
- mathematics
- math
- special functions
- special
- function
- binomial
- combinatorics
- choose
- factorial
- fact
- integer
- number
- View more
Compute an integer binary logarithm (base two).
- stdlib
- stdfastmath
- mathematics
- math
- fastmath
- fast
- approximate
- approximation
- approx
- math.log2
- log2
- binary
- base 2
- logarithm
- View more
Common logarithm (base ten).
Base `b` logarithm.
Evaluate the natural logarithm of 1-exp(-|x|).
- stdlib
- stdmath
- mathematics
- math
- math.log
- math.log1p
- special functions
- special
- ln
- log1mexp
- natural
- logarithm
- log
- function
Evaluate the natural logarithm of 1+exp(x).
- stdlib
- stdmath
- mathematics
- math
- math.log
- math.log1p
- special functions
- special
- ln
- log1pexp
- natural
- logarithm
- log
- function
Compute the natural logarithm of exp(x) + exp(y).
Compute `x * ln(y)` so that the result is `0` if `x = 0`.
Compute `x * ln(y+1)` so that the result is `0` if `x = 0`.
Create an iterator which computes the base `b` logarithm.