# @stdlib/stats-base-dists-discrete-uniform-logpmf

0.2.0 • Public • Published

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

# Logarithm of Probability Mass Function

Evaluate the natural logarithm of the probability mass function (PMF) for a discrete uniform distribution.

The probability mass function (PMF) for a discrete uniform random variable is

where a is the minimum support and b is the maximum support of the distribution. The parameters must satisfy a <= b.

## Installation

npm install @stdlib/stats-base-dists-discrete-uniform-logpmf

## Usage

var logpmf = require( '@stdlib/stats-base-dists-discrete-uniform-logpmf' );

#### logpmf( x, a, b )

Evaluates the natural logarithm of the probability mass function (PMF) for a discrete uniform distribution with parameters a (minimum support) and b (maximum support).

var y = logpmf( 2.0, 0, 4 );
// returns ~-1.609

y = logpmf( 5.0, 0, 4 );
// returns -Infinity

y = logpmf( 3, -4, 4 );
// returns ~-2.197

If provided NaN as any argument, the function returns NaN.

var y = logpmf( NaN, -2, 2 );
// returns NaN

y = logpmf( 1.0, NaN, 4 );
// returns NaN

y = logpmf( 2.0, 0, NaN );
// returns NaN

If a or b is not an integer value, the function returns NaN.

var y = logpmf( 2.0, 1, 5.5 );
// returns NaN

If provided a > b, the function returns NaN.

var y = logpmf( 2.0, 3, 2 );
// returns NaN

#### logpmf.factory( a, b )

Returns a function for evaluating the PMF for a discrete uniform distribution with parameters a (minimum support) and b (maximum support).

var myLogPMF = logpmf.factory( 6, 7 );
var y = myLogPMF( 7.0 );
// returns ~-0.693

y = myLogPMF( 5.0 );
// returns -Infinity

## Examples

var randint = require( '@stdlib/random-base-discrete-uniform' );
var logpmf = require( '@stdlib/stats-base-dists-discrete-uniform-logpmf' );

var randa = randint.factory( 0, 10 );
var randb = randint.factory();
var a;
var b;
var x;
var y;
var i;

for ( i = 0; i < 25; i++ ) {
a = randa();
x = randb( a, a+randa() );
b = randb( a, a+randa() );
y = logpmf( x, a, b );
console.log( 'x: %d, a: %d, b: %d, ln(P(X=x;a,b)): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), y.toFixed( 4 ) );
}

## Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

## Package Sidebar

### Install

npm i @stdlib/stats-base-dists-discrete-uniform-logpmf

stdlib.io

50

0.2.0

Apache-2.0

55 kB

13