Nauseating Packaged Meat

    @stdlib/blas-base-gscal
    TypeScript icon, indicating that this package has built-in type declarations

    0.0.7 • Public • Published

    gscal

    NPM version Build Status Coverage Status

    Multiply a vector x by a constant alpha.

    Installation

    npm install @stdlib/blas-base-gscal

    Usage

    var gscal = require( '@stdlib/blas-base-gscal' );

    gscal( N, alpha, x, stride )

    Multiplies a vector x by a constant alpha.

    var x = [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ];
    
    gscal( x.length, 5.0, x, 1 );
    // x => [ -10.0, 5.0, 15.0, -25.0, 20.0, 0.0, -5.0, -15.0 ]

    The function has the following parameters:

    • N: number of indexed elements.
    • alpha: scalar constant.
    • x: input Array or typed array.
    • stride: index increment.

    The N and stride parameters determine which elements in x are accessed at runtime. For example, to multiply every other value by a constant

    var floor = require( '@stdlib/math-base-special-floor' );
    
    var x = [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ];
    
    var N = floor( x.length / 2 );
    var alpha = 5.0;
    var stride = 2;
    
    gscal( N, alpha, x, stride );
    // x => [ -10.0, 1.0, 15.0, -5.0, 20.0, 0.0, -5.0, -3.0 ]

    Note that indexing is relative to the first index. To introduce an offset, use typed array views.

    var Float64Array = require( '@stdlib/array-float64' );
    var floor = require( '@stdlib/math-base-special-floor' );
    
    // Initial array...
    var x0 = new Float64Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );
    
    // Create an offset view...
    var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
    
    var N = floor( x0.length / 2 );
    var alpha = 5.0;
    var stride = 2;
    
    // Scale every other value...
    gscal( N, alpha, x1, stride );
    // x0 => <Float64Array>[ 1.0, -10.0, 3.0, -20.0, 5.0, -30.0 ]

    If either N or stride is less than or equal to 0, the function returns x unchanged.

    gscal.ndarray( N, alpha, x, stride, offset )

    Multiplies a vector x by a constant alpha using alternative indexing semantics.

    var x = [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ];
    
    gscal.ndarray( x.length, 5.0, x, 1, 0 );
    // x => [ -10.0, 5.0, 15.0, -25.0, 20.0, 0.0, -5.0, -15.0 ]

    The function has the following additional parameters:

    • offset: starting index.

    While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to multiply the last three elements of x by a constant

    var x = [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ];
    var alpha = 5.0;
    
    gscal.ndarray( 3, alpha, x, 1, x.length-3 );
    // x => [ 1.0, -2.0, 3.0, -20.0, 25.0, -30.0 ]

    Notes

    • If N <= 0, both functions return x unchanged.
    • gscal() corresponds to the BLAS level 1 function dscal with the exception that this implementation works with any array type, not just Float64Arrays. Depending on the environment, the typed versions (dscal, sscal, etc.) are likely to be significantly more performant.

    Examples

    var round = require( '@stdlib/math-base-special-round' );
    var randu = require( '@stdlib/random-base-randu' );
    var Float64Array = require( '@stdlib/array-float64' );
    var gscal = require( '@stdlib/blas-base-gscal' );
    
    var rand;
    var sign;
    var x;
    var i;
    
    x = new Float64Array( 100 );
    for ( i = 0; i < x.length; i++ ) {
        rand = round( randu()*100.0 );
        sign = randu();
        if ( sign < 0.5 ) {
            sign = -1.0;
        } else {
            sign = 1.0;
        }
        x[ i ] = sign * rand;
    }
    console.log( x );
    
    gscal( x.length, 5.0, x, 1 );
    console.log( x );

    See Also


    Notice

    This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

    For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

    Community

    Chat


    License

    See LICENSE.

    Copyright

    Copyright © 2016-2022. The Stdlib Authors.

    Install

    npm i @stdlib/blas-base-gscal

    Homepage

    stdlib.io

    DownloadsWeekly Downloads

    47

    Version

    0.0.7

    License

    Apache-2.0

    Unpacked Size

    52.3 kB

    Total Files

    10

    Last publish

    Collaborators

    • stdlib-bot
    • kgryte
    • planeshifter
    • rreusser