Nasty Polka Music

    wink-regression-tree

    2.0.0 • Public • Published

    wink-regression-tree

    Decision Tree to predict the value of a continuous target variable

    Build Status Coverage Status Inline docs dependencies Status devDependencies Status Gitter

    Predict the value of a continuous variable such as price, turn around time, or mileage using wink-regression-tree.

    Installation

    Use npm to install:

    npm install wink-regression-tree --save
    

    Getting Started

    Here is an example of predicting car’s mileage (miles per gallon - mpg) from attributes like displacement, horsepower, acceleration, country of origin, and few more. A sample data row is given for quick reference:

    Model MPG Cylinders Displacement Power Weight Acceleration Year Origin
    Toyota Mark II 20 6 large displacement high power high weight slow 73 Japan

    The code below provides a potential configuration to predict the value of miles per gallon:

    // Load wink-regression-tree.
    var regressionTree = require( 'wink-regression-tree' );
     
    // Load cars training data set.
    // In practice an async mechanism may be used to
    // read data asynchronously and call `ingest()` on
    // every row of data read.
    var cars = require( 'wink-regression-tree/sample-data/cars.json' );
     
    // Create a sample data to test prediction for
    // Ford Gran Torino, having "mpg of 14.5", very
    // large displacement, extremely high power, very
    // high weight, slow, and with origin as US.
    var input = {
      model: 'Ford Gran Torino',
      weight: 'very high weight',
      displacement: 'very large displacement',
      horsepower: 'extremely high power',
      origin: 'US',
      acceleration: 'slow'
    };
    // Above record is not the part of training data.
     
    // Create an instance of the regression  tree.
    var rt = regressionTree();
     
    // Specify columns of the training data.
    var columns = [
      { name: 'model', categorical: true, exclude: true },
      { name: 'mpg', categorical: false, target: true },
      { name: 'cylinders', categorical: true, exclude: false },
      { name: 'displacement', categorical: true, exclude: false },
      { name: 'horsepower', categorical: true, exclude: false },
      { name: 'weight', categorical: true, exclude: false },
      { name: 'acceleration', categorical: true, exclude: false },
      { name: 'year', categorical: true, exclude: true },
      { name: 'origin', categorical: true, exclude: false  }
    ];
    // Specify configuration for learning.
    var treeParams = {
      minPercentVarianceReduction: 0.5,
      minLeafNodeItems: 10,
      minSplitCandidateItems: 30,
      minAvgChildrenItems: 2
    };
    // Define the regression tree configuration using
    // `columns` and `treeParams`.
    rt.defineConfig( columns, treeParams );
     
    // Ingest the data.
    cars.forEach( function ( row ) {
      rt.ingest( row );
    } );
     
    // Data ingested! Now time to learn from data!!
    console.log( rt.learn() );
    // -> 16 (Number of Rules Learned)
     
    // Predict the **mean** value.
    var mean = rt.predict( input );
    console.log( +mean.toFixed( 1 ) );
    // -> 14.3 ( compare with actual mpg of 14.5 )
     
    // In practice one may like to compute a range
    // or upper limit using the `modifier` function
    // during prediction. Note `size`, `mean`, and `stdev`
    // values, passed to this function, can be used
    // for computing the range or the upper limit.

    Try experimenting with this example on Runkit in the browser.

    Documentation

    For detailed API docs, check out http://winkjs.org/wink-regression-tree/ URL!

    Need Help?

    If you spot a bug and the same has not yet been reported, raise a new issue or consider fixing it and sending a pull request.

    About wink

    Wink is a family of open source packages for Statistical Analysis, Natural Language Processing and Machine Learning in NodeJS. The code is thoroughly documented for easy human comprehension and has a test coverage of ~100% for reliability to build production grade solutions.

    Copyright & License

    wink-regression-tree is copyright 2017-18 GRAYPE Systems Private Limited.

    It is licensed under the terms of the MIT License.

    Install

    npm i wink-regression-tree

    Homepage

    winkjs.org/

    DownloadsWeekly Downloads

    5

    Version

    2.0.0

    License

    MIT

    Unpacked Size

    109 kB

    Total Files

    9

    Last publish

    Collaborators

    • prtksxna
    • r4chn4
    • sanjaya