This project provides a Model Context Protocol (MCP) server that connects AI assistants to ScreenshotOne.com API to capture screenshots of websites.
- [x] Take screenshots of any URL
- [x] Render HTML content and take screenshots
- [x] Customize viewport size and device emulation
- [x] Capture full-page screenshots
- [x] Select specific elements using CSS selectors
- [x] Multiple output formats (PNG, JPEG, WebP, PDF)
- [x] Block ads, trackers, and cookie banners
- [x] Inject custom CSS and JavaScript
- [x] Control wait behavior and timing
- Website
- Playground
- API Docs
- Create your API key here
- [x] "stdio" transport - Default transport for CLI usage
- [x] "Streamable HTTP" transport - For web-based clients
- [ ] Implement auth ("Authorization" headers with
Bearer <token>
)
- [ ] Implement auth ("Authorization" headers with
- [ ]
"sse" transport(Deprecated) - [ ] Write tests
# Take a screenshot of a URL
npm run dev:cli -- take-screenshot --url "https://example.com" --access-key "your-access-key"
# Take a screenshot with custom viewport
npm run dev:cli -- take-screenshot --url "https://example.com" --viewport-width 1920 --viewport-height 1080
# Capture a full page screenshot
npm run dev:cli -- take-screenshot --url "https://example.com" --full-page
# Save the screenshot to a file
npm run dev:cli -- take-screenshot --url "https://example.com" --output screenshot.png
# Block ads and trackers
npm run dev:cli -- take-screenshot --url "https://example.com" --block-ads --block-trackers --block-cookie-banners
# ----------------------------------------------
# UPLOAD SCREENSHOT TO CLOUDFLARE
# REMEMBER TO SET THE ENVIRONMENT VARIABLES
# > See example at ".env.example" file
# ----------------------------------------------
# Take a screenshot and upload it to Cloudflare
npm run dev:cli -- take-screenshot --url https://example.com --upload
# Take a screenshot with a custom filename
npm run dev:cli -- take-screenshot --url https://example.com --upload --upload-filename my-screenshot
# Take a screenshot with upload debugging enabled
npm run dev:cli -- take-screenshot --url https://example.com --upload --upload-debug
For local configuration with stdio transport:
{
"mcpServers": {
"screenshotone": {
"command": "node",
"args": ["/path/to/screenshotone-mcp-server/dist/index.js"],
"transportType": "stdio"
}
}
}
For remote HTTP configuration:
{
"mcpServers": {
"screenshotone": {
"type": "http",
"url": "http://localhost:8080/mcp"
}
}
}
Environment Variables for HTTP Transport:
You can configure the HTTP server using these environment variables:
-
MCP_HTTP_HOST
: The host to bind to (default:127.0.0.1
) -
MCP_HTTP_PORT
: The port to listen on (default:8080
) -
MCP_HTTP_PATH
: The endpoint path (default:/mcp
)
Model Context Protocol (MCP) is an open standard that allows AI systems to securely and contextually connect with external tools and data sources.
This boilerplate implements the MCP specification with a clean, layered architecture that can be extended to build custom MCP servers for any API or data source.
-
Production-Ready Architecture: Follows the same pattern used in published MCP servers, with clear separation between CLI, tools, controllers, and services.
-
Type Safety: Built with TypeScript for improved developer experience, code quality, and maintainability.
-
Working Example: Includes a fully implemented IP lookup tool demonstrating the complete pattern from CLI to API integration.
-
Testing Framework: Comes with testing infrastructure for both unit and CLI integration tests, including coverage reporting.
-
Development Tooling: Includes ESLint, Prettier, TypeScript, and other quality tools preconfigured for MCP server development.
- Node.js (>=18.x): Download
- Git: For version control
# Clone the repository
git clone https://github.com/mrgoonie/screenshotone-mcp-server.git
cd screenshotone-mcp-server
# Install dependencies
npm install
Start the server in development mode with stdio transport (default):
npm run dev:server
Or with the Streamable HTTP transport:
npm run dev:server:http
This starts the MCP server with hot-reloading and enables the MCP Inspector at http://localhost:5173.
⚙️ Proxy server listening on port 6277 🔍 MCP Inspector is up and running at http://127.0.0.1:6274
When using HTTP transport, the server will be available at http://127.0.0.1:8080/mcp by default.
Take a screenshot using the CLI:
# Basic screenshot
npm run dev:cli -- take-screenshot --url "https://example.com" --access-key "your-access-key"
# Advanced options
npm run dev:cli -- take-screenshot --url "https://example.com" --format png --viewport-width 1920 --viewport-height 1080 --full-page --output screenshot.png
This boilerplate follows a clean, layered architecture pattern that separates concerns and promotes maintainability.
src/
├── cli/ # Command-line interfaces
├── controllers/ # Business logic
├── resources/ # MCP resources: expose data and content from your servers to LLMs
├── services/ # External API interactions
├── tools/ # MCP tool definitions
├── types/ # Type definitions
├── utils/ # Shared utilities
└── index.ts # Entry point
- Purpose: Define command-line interfaces that parse arguments and call controllers
-
Naming: Files should be named
<feature>.cli.ts
-
Testing: CLI integration tests in
<feature>.cli.test.ts
- Purpose: Define MCP tools with schemas and descriptions for AI assistants
-
Naming: Files should be named
<feature>.tool.ts
with types in<feature>.types.ts
- Pattern: Each tool should use zod for argument validation
- Purpose: Implement business logic, handle errors, and format responses
-
Naming: Files should be named
<feature>.controller.ts
-
Pattern: Should return standardized
ControllerResponse
objects
- Purpose: Interact with external APIs or data sources
-
Naming: Files should be named
<feature>.service.ts
- Pattern: Pure API interactions with minimal logic
- Purpose: Provide shared functionality across the application
-
Key Utils:
-
logger.util.ts
: Structured logging -
error.util.ts
: Error handling and standardization -
formatter.util.ts
: Markdown formatting helpers
-
# Start server in development mode (hot-reload & inspector)
npm run dev:server
# Run CLI in development mode
npm run dev:cli -- [command] [args]
# Build the project
npm run build
# Start server in production mode
npm run start:server
# Run CLI in production mode
npm run start:cli -- [command] [args]
# Run all tests
npm test
# Run specific tests
npm test -- src/path/to/test.ts
# Generate test coverage report
npm run test:coverage
# Lint code
npm run lint
# Format code with Prettier
npm run format
# Check types
npm run typecheck
Follow these steps to add your own tools to the server:
Create a new service in src/services/
to interact with your external API:
// src/services/example.service.ts
import { Logger } from '../utils/logger.util.js';
const logger = Logger.forContext('services/example.service.ts');
export async function getData(param: string): Promise<any> {
logger.debug('Getting data', { param });
// API interaction code here
return { result: 'example data' };
}
Add a controller in src/controllers/
to handle business logic:
// src/controllers/example.controller.ts
import { Logger } from '../utils/logger.util.js';
import * as exampleService from '../services/example.service.js';
import { formatMarkdown } from '../utils/formatter.util.js';
import { handleControllerError } from '../utils/error-handler.util.js';
import { ControllerResponse } from '../types/common.types.js';
const logger = Logger.forContext('controllers/example.controller.ts');
export interface GetDataOptions {
param?: string;
}
export async function getData(
options: GetDataOptions = {},
): Promise<ControllerResponse> {
try {
logger.debug('Getting data with options', options);
const data = await exampleService.getData(options.param || 'default');
const content = formatMarkdown(data);
return { content };
} catch (error) {
throw handleControllerError(error, {
entityType: 'ExampleData',
operation: 'getData',
source: 'controllers/example.controller.ts',
});
}
}
Create a tool definition in src/tools/
:
// src/tools/example.tool.ts
import { McpServer } from '@modelcontextprotocol/sdk/server/mcp.js';
import { z } from 'zod';
import { Logger } from '../utils/logger.util.js';
import { formatErrorForMcpTool } from '../utils/error.util.js';
import * as exampleController from '../controllers/example.controller.js';
const logger = Logger.forContext('tools/example.tool.ts');
const GetDataArgs = z.object({
param: z.string().optional().describe('Optional parameter'),
});
type GetDataArgsType = z.infer<typeof GetDataArgs>;
async function handleGetData(args: GetDataArgsType) {
try {
logger.debug('Tool get_data called', args);
const result = await exampleController.getData({
param: args.param,
});
return {
content: [{ type: 'text' as const, text: result.content }],
};
} catch (error) {
logger.error('Tool get_data failed', error);
return formatErrorForMcpTool(error);
}
}
export function register(server: McpServer) {
server.tool(
'get_data',
`Gets data from the example API, optionally using \`param\`.
Use this to fetch example data. Returns formatted data as Markdown.`,
GetDataArgs.shape,
handleGetData,
);
}
Create a CLI command in src/cli/
:
// src/cli/example.cli.ts
import { program } from 'commander';
import { Logger } from '../utils/logger.util.js';
import * as exampleController from '../controllers/example.controller.js';
import { handleCliError } from '../utils/error-handler.util.js';
const logger = Logger.forContext('cli/example.cli.ts');
program
.command('get-data')
.description('Get example data')
.option('--param <value>', 'Optional parameter')
.action(async (options) => {
try {
logger.debug('CLI get-data called', options);
const result = await exampleController.getData({
param: options.param,
});
console.log(result.content);
} catch (error) {
handleCliError(error);
}
});
Update the entry points to register your new components:
// In src/cli/index.ts
import '../cli/example.cli.js';
// In src/index.ts (for the tool)
import exampleTool from './tools/example.tool.js';
// Then in registerTools function:
exampleTool.register(server);
Access the visual MCP Inspector to test your tools and view request/response details:
- Run
npm run dev:server
- Open http://localhost:5173 in your browser
- Test your tools and view logs directly in the UI
Enable debug logs for development:
# Set environment variable
DEBUG=true npm run dev:server
# Or configure in ~/.mcp/configs.json
When ready to publish your custom MCP server:
- Update package.json with your details
- Update README.md with your tool documentation
- Build the project:
npm run build
- Test the production build:
npm run start:server
- Publish to npm:
npm publish
{
"screenshotone": {
"environments": {
"DEBUG": "true",
"SCREENSHOTONE_API_KEY": "value"
}
}
}
Note: For backward compatibility, the server will also recognize configurations under the full package name (screenshotone-mcp-server
) or the unscoped package name (screenshotone-mcp-server
) if the screenshotone
key is not found. However, using the short screenshotone
key is recommended for new configurations.