This is a standalone Priority Queue data structure from the data-structure-typed collection. If you wish to access more
data structures or advanced features, you can transition to directly installing the
complete data-structure-typed package
npm i priority-queue-typed --save
yarn add priority-queue-typed
Priority Queue
Min Priority Queue
Max Priority Queue
import {PriorityQueue, MinPriorityQueue} from 'data-structure-typed';
// /* or if you prefer */ import {PriorityQueue, MinPriorityQueue} from 'priority-queue-typed';
const minPQ = new PriorityQueue<number>({nodes: [5, 2, 3, 4, 6, 1], comparator: (a, b) => a - b});
minPQ.toArray() // [1, 2, 3, 4, 6, 5]
minPQ.poll();
minPQ.poll();
minPQ.poll();
minPQ.toArray() // [4, 5, 6]
minPQ.peek() // 4
PriorityQueue.heapify({
nodes: [3, 2, 1, 5, 6, 7, 8, 9, 10],
comparator: (a, b) => a - b
}).toArray() // [1, 2, 3, 5, 6, 7, 8, 9, 10]
const priorityQueue = new MinPriorityQueue<number>();
priorityQueue.add(5);
priorityQueue.add(3);
priorityQueue.add(7);
priorityQueue.add(1);
const sortedArray = priorityQueue.sort(); // [1, 3, 5, 7]);
const minPQ1 = new PriorityQueue<number>({nodes: [2, 5, 8, 3, 1, 6, 7, 4], comparator: (a, b) => a - b});
const clonedPriorityQueue = minPQ1.clone();
clonedPriorityQueue.getNodes() // minPQ1.getNodes()
clonedPriorityQueue.sort() // [1, 2, 3, 4, 5, 6, 7, 8]
minPQ1.DFS('in') // [4, 3, 2, 5, 1, 8, 6, 7]
minPQ1.DFS('post') // [4, 3, 5, 2, 8, 7, 6, 1]
minPQ1.DFS('pre') // [1, 2, 3, 4, 5, 6, 8, 7]
const {PriorityQueue, MinPriorityQueue} = require('data-structure-typed');
// /* or if you prefer */ const {PriorityQueue, MinPriorityQueue} = require('priority-queue-typed');
const minPQ = new PriorityQueue({nodes: [5, 2, 3, 4, 6, 1], comparator: (a, b) => a - b});
minPQ.toArray() // [1, 2, 3, 4, 6, 5]
minPQ.poll();
minPQ.poll();
minPQ.poll();
minPQ.toArray() // [4, 5, 6]
minPQ.peek() // 4
PriorityQueue.heapify({
nodes: [3, 2, 1, 5, 6, 7, 8, 9, 10],
comparator: (a, b) => a - b
}).toArray() // [1, 2, 3, 5, 6, 7, 8, 9, 10]
const priorityQueue = new MinPriorityQueue();
priorityQueue.add(5);
priorityQueue.add(3);
priorityQueue.add(7);
priorityQueue.add(1);
const sortedArray = priorityQueue.sort(); // [1, 3, 5, 7]);
const minPQ1 = new PriorityQueue<number>({nodes: [2, 5, 8, 3, 1, 6, 7, 4], comparator: (a, b) => a - b});
const clonedPriorityQueue = minPQ1.clone();
clonedPriorityQueue.getNodes() // minPQ1.getNodes()
clonedPriorityQueue.sort() // [1, 2, 3, 4, 5, 6, 7, 8]
minPQ1.DFS('in') // [4, 3, 2, 5, 1, 8, 6, 7]
minPQ1.DFS('post') // [4, 3, 5, 2, 8, 7, 6, 1]
minPQ1.DFS('pre') // [1, 2, 3, 4, 5, 6, 8, 7]
API Docs
Live Examples
Examples Repository
Standard library data structure comparison
Data Structure Typed |
C++ STL |
java.util |
Python collections |
PriorityQueue<E> |
priority_queue<T> |
PriorityQueue<E> |
- |
max-priority-queue
test name |
time taken (ms) |
executions per sec |
sample deviation |
10,000 refill & poll |
8.91 |
112.29 |
2.26e-4 |
priority-queue
test name |
time taken (ms) |
executions per sec |
sample deviation |
100,000 add & pop |
103.59 |
9.65 |
0.00 |
Built-in classic algorithms
Algorithm |
Function Description |
Iteration Type |
Software Engineering Design Standards
Principle |
Description |
Practicality |
Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names. |
Extensibility |
Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures. |
Modularization |
Includes data structure modularization and independent NPM packages. |
Efficiency |
All methods provide time and space complexity, comparable to native JS performance. |
Maintainability |
Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns. |
Testability |
Automated and customized unit testing, performance testing, and integration testing. |
Portability |
Plans for porting to Java, Python, and C++, currently achieved to 80%. |
Reusability |
Fully decoupled, minimized side effects, and adheres to OOP. |
Security |
Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects. |
Scalability |
Data structure software does not involve load issues. |