This is a standalone Min Heap data structure from the data-structure-typed collection. If you wish to access more data structures or advanced features, you can transition to directly installing the complete data-structure-typed package
npm i min-heap-typed --save
yarn add min-heap-typed
import {MinHeap} from 'data-structure-typed';
// /* or if you prefer */ import {MinHeap} from 'heap-typed';
const minNumHeap = new MinHeap<number>();
minNumHeap.add(1).add(6).add(2).add(0).add(5).add(9);
minNumHeap.has(1) // true
minNumHeap.has(2) // true
minNumHeap.poll() // 0
minNumHeap.poll() // 1
minNumHeap.peek() // 2
minNumHeap.has(1); // false
minNumHeap.has(2); // true
const arrFromHeap = minNumHeap.toArray();
arrFromHeap.length // 4
arrFromHeap[0] // 2
arrFromHeap[1] // 5
arrFromHeap[2] // 9
arrFromHeap[3] // 6
minNumHeap.sort() // [2, 5, 6, 9]
const {MinHeap} = require('data-structure-typed');
// /* or if you prefer */ const {MinHeap} = require('heap-typed');
const minNumHeap = new MinHeap();
minNumHeap.add(1).add(6).add(2).add(0).add(5).add(9);
minNumHeap.has(1) // true
minNumHeap.has(2) // true
minNumHeap.poll() // 0
minNumHeap.poll() // 1
minNumHeap.peek() // 2
minNumHeap.has(1); // false
minNumHeap.has(2); // true
const arrFromHeap = minNumHeap.toArray();
arrFromHeap.length // 4
arrFromHeap[0] // 2
arrFromHeap[1] // 5
arrFromHeap[2] // 9
arrFromHeap[3] // 6
minNumHeap.sort() // [2, 5, 6, 9]
Data Structure | Unit Test | Performance Test | API Docs |
---|---|---|---|
Heap | Heap |
Data Structure Typed | C++ STL | java.util | Python collections |
---|---|---|---|
Heap<E> | priority_queue<T> | PriorityQueue<E> | heapq |
heap
test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
10,000 add & pop | 5.80 | 172.35 | 8.78e-5 |
10,000 fib add & pop | 357.92 | 2.79 | 0.00 |
Algorithm | Function Description | Iteration Type |
---|
Principle | Description |
---|---|
Practicality | Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names. |
Extensibility | Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures. |
Modularization | Includes data structure modularization and independent NPM packages. |
Efficiency | All methods provide time and space complexity, comparable to native JS performance. |
Maintainability | Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns. |
Testability | Automated and customized unit testing, performance testing, and integration testing. |
Portability | Plans for porting to Java, Python, and C++, currently achieved to 80%. |
Reusability | Fully decoupled, minimized side effects, and adheres to OOP. |
Security | Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects. |
Scalability | Data structure software does not involve load issues. |