@stdlib/stats-base-dcumax
    TypeScript icon, indicating that this package has built-in type declarations

    0.0.7 • Public • Published

    dcumax

    NPM version Build Status Coverage Status dependencies

    Calculate the cumulative maximum of double-precision floating-point strided array elements.

    Installation

    npm install @stdlib/stats-base-dcumax

    Usage

    var dcumax = require( '@stdlib/stats-base-dcumax' );

    dcumax( N, x, strideX, y, strideY )

    Computes the cumulative maximum of double-precision floating-point strided array elements.

    var Float64Array = require( '@stdlib/array-float64' );
    
    var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
    var y = new Float64Array( x.length );
    
    dcumax( x.length, x, 1, y, 1 );
    // y => <Float64Array>[ 1.0, 1.0, 2.0 ]

    The function has the following parameters:

    • N: number of indexed elements.
    • x: input Float64Array.
    • strideX: index increment for x.
    • y: output Float64Array.
    • strideY: index increment for y.

    The N and stride parameters determine which elements in x and y are accessed at runtime. For example, to compute the cumulative maximum of every other element in x,

    var Float64Array = require( '@stdlib/array-float64' );
    
    var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
    var y = new Float64Array( x.length );
    
    var v = dcumax( 4, x, 2, y, 1 );
    // y => <Float64Array>[ 1.0, 2.0, 2.0, 4.0, 0.0, 0.0, 0.0, 0.0 ]

    Note that indexing is relative to the first index. To introduce an offset, use typed array views.

    var Float64Array = require( '@stdlib/array-float64' );
    
    // Initial arrays...
    var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    var y0 = new Float64Array( x0.length );
    
    // Create offset views...
    var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
    var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
    
    dcumax( 4, x1, -2, y1, 1 );
    // y0 => <Float64Array>[ 0.0, 0.0, 0.0, 4.0, 4.0, 4.0, 4.0, 0.0 ]

    dcumax.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )

    Computes the cumulative maximum of double-precision floating-point strided array elements using alternative indexing semantics.

    var Float64Array = require( '@stdlib/array-float64' );
    
    var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
    var y = new Float64Array( x.length );
    
    dcumax.ndarray( x.length, x, 1, 0, y, 1, 0 );
    // y => <Float64Array>[ 1.0, 1.0, 2.0 ]

    The function has the following additional parameters:

    • offsetX: starting index for x.
    • offsetY: starting index for y.

    While typed array views mandate a view offset based on the underlying buffer, offsetX and offsetY parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative maximum of every other value in x starting from the second value and to store in the last N elements of y starting from the last element

    var Float64Array = require( '@stdlib/array-float64' );
    
    var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    var y = new Float64Array( x.length );
    
    dcumax.ndarray( 4, x, 2, 1, y, -1, y.length-1 );
    // y => <Float64Array>[ 0.0, 0.0, 0.0, 0.0, 4.0, 2.0, 1.0, 1.0 ]

    Notes

    • If N <= 0, both functions return y unchanged.

    Examples

    var randu = require( '@stdlib/random-base-randu' );
    var round = require( '@stdlib/math-base-special-round' );
    var Float64Array = require( '@stdlib/array-float64' );
    var dcumax = require( '@stdlib/stats-base-dcumax' );
    
    var y;
    var x;
    var i;
    
    x = new Float64Array( 10 );
    y = new Float64Array( x.length );
    for ( i = 0; i < x.length; i++ ) {
        x[ i ] = round( randu()*100.0 );
    }
    console.log( x );
    console.log( y );
    
    dcumax( x.length, x, 1, y, -1 );
    console.log( y );

    Notice

    This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

    For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

    Community

    Chat


    License

    See LICENSE.

    Copyright

    Copyright © 2016-2021. The Stdlib Authors.

    Install

    npm i @stdlib/stats-base-dcumax

    Homepage

    stdlib.io

    DownloadsWeekly Downloads

    12

    Version

    0.0.7

    License

    Apache-2.0

    Unpacked Size

    77.7 kB

    Total Files

    20

    Last publish

    Collaborators

    • stdlib-bot
    • kgryte
    • planeshifter
    • rreusser