About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Serialize ndarray meta data.
npm install @stdlib/ndarray-base-serialize-meta-data
var serialize = require( '@stdlib/ndarray-base-serialize-meta-data' );
Serializes ndarray meta data.
var array = require( '@stdlib/ndarray-array' );
var arr = array( [ [ 1, 2 ], [ 3, 4 ] ] );
var dv = serialize( arr );
// returns <DataView>
-
Serialization is performed according to host byte order (endianness).
-
Meta data format:
| endianness (1 byte) | <dtype> (2 bytes) | <ndims> (8 bytes) | <shape> (ndims*8 bytes) | <strides> (ndims*8 bytes) | <offset> (8 bytes) | <order> (1 byte) | <mode> (1 byte) | <nsubmodes> (8 bytes) | <submodes> (nsubmodes*1 bytes) | <flags> (4 bytes) |
which translates to the following
ArrayBuffer
layout:ArrayBuffer[ <endianness>[int8], <dtype>[int16], <ndims>[int64], <shape>[ndims*int64], <strides>[ndims*int64], <offset>[int64], <order>[int8], <mode>[int8], <nsubmodes>[int64], <submodes>[nsubmodes*int8], <flags>[int32] ]
where
strides
andoffset
are in units of bytes. -
If the endianness is
1
, the byte order is little endian. If the endianness is0
, the byte order is big endian. -
Buffer length:
1 + 2 + 8 + (ndims*8) + (ndims*8) + 8 + 1 + 1 + 8 + (nsubmodes*1) + 4 = 33 + (ndims*16) + nsubmodes
For example, consider a three-dimensional ndarray with one subscript index mode (submode):
33 + (3*16) + 1 = 82 bytes
var IS_LITTLE_ENDIAN = require( '@stdlib/assert-is-little-endian' );
var array = require( '@stdlib/ndarray-array' );
var Uint8Array = require( '@stdlib/array-uint8' );
var fromInt64Bytes = require( '@stdlib/number-float64-base-from-int64-bytes' );
var serialize = require( '@stdlib/ndarray-base-serialize-meta-data' );
// Create an ndarray:
var x = array( [ [ 1, 2 ], [ 3, 4 ] ] );
// Print various properties:
console.log( 'dtype: %s', x.dtype );
console.log( 'ndims: %d', x.ndims );
console.log( 'shape: [ %s ]', x.shape.join( ', ' ) );
console.log( 'strides: [ %s ]', x.strides.join( ', ' ) );
console.log( 'offset: %d', x.offset );
console.log( 'order: %s', x.order );
// Serialize ndarray meta data to a DataView:
var dv = serialize( x );
// returns <DataView>
// Create a Uint8Array view:
var bytes = new Uint8Array( dv.buffer );
// Extract the data type (enum):
var dtype = dv.getInt16( 1, IS_LITTLE_ENDIAN );
console.log( 'dtype (enum): %d', dtype );
// Extract the number of dimensions:
var ndims = fromInt64Bytes( bytes, 1, 3 );
console.log( 'ndims: %d', ndims );
// Extract the shape:
var shape = [];
var i;
for ( i = 0; i < ndims; i++ ) {
shape.push( fromInt64Bytes( bytes, 1, 11+(i*8) ) );
}
console.log( 'shape: [ %s ]', shape.join( ', ' ) );
// Extract the strides (in units of bytes):
var strides = [];
for ( i = 0; i < ndims; i++ ) {
strides.push( fromInt64Bytes( bytes, 1, 11+(ndims*8)+(i*8) ) );
}
console.log( 'strides (bytes): [ %s ]', strides.join( ', ' ) );
// Extract the index offset (in bytes):
var offset = fromInt64Bytes( bytes, 1, 11+(ndims*16) );
console.log( 'offset (bytes): %d', offset );
// Extract the order (enum):
var order = dv.getInt8( 19+(ndims*16) );
console.log( 'order (enum): %d', order );
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.