@stdlib/blas-ext-base-dsumpw
    TypeScript icon, indicating that this package has built-in type declarations

    0.0.8 • Public • Published

    dsumpw

    NPM version Build Status Coverage Status

    Calculate the sum of double-precision floating-point strided array elements using pairwise summation.

    Installation

    npm install @stdlib/blas-ext-base-dsumpw

    Usage

    var dsumpw = require( '@stdlib/blas-ext-base-dsumpw' );

    dsumpw( N, x, stride )

    Computes the sum of double-precision floating-point strided array elements using pairwise summation.

    var Float64Array = require( '@stdlib/array-float64' );
    
    var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
    var N = x.length;
    
    var v = dsumpw( N, x, 1 );
    // returns 1.0

    The function has the following parameters:

    • N: number of indexed elements.
    • x: input Float64Array.
    • stride: index increment for x.

    The N and stride parameters determine which elements in x are accessed at runtime. For example, to compute the sum of every other element in x,

    var Float64Array = require( '@stdlib/array-float64' );
    var floor = require( '@stdlib/math-base-special-floor' );
    
    var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
    var N = floor( x.length / 2 );
    
    var v = dsumpw( N, x, 2 );
    // returns 5.0

    Note that indexing is relative to the first index. To introduce an offset, use typed array views.

    var Float64Array = require( '@stdlib/array-float64' );
    var floor = require( '@stdlib/math-base-special-floor' );
    
    var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
    
    var N = floor( x0.length / 2 );
    
    var v = dsumpw( N, x1, 2 );
    // returns 5.0

    dsumpw.ndarray( N, x, stride, offset )

    Computes the sum of double-precision floating-point strided array elements using pairwise summation and alternative indexing semantics.

    var Float64Array = require( '@stdlib/array-float64' );
    
    var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
    var N = x.length;
    
    var v = dsumpw.ndarray( N, x, 1, 0 );
    // returns 1.0

    The function has the following additional parameters:

    • offset: starting index for x.

    While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other value in x starting from the second value

    var Float64Array = require( '@stdlib/array-float64' );
    var floor = require( '@stdlib/math-base-special-floor' );
    
    var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    var N = floor( x.length / 2 );
    
    var v = dsumpw.ndarray( N, x, 2, 1 );
    // returns 5.0

    Notes

    • If N <= 0, both functions return 0.0.
    • In general, pairwise summation is more numerically stable than ordinary recursive summation (i.e., "simple" summation), with slightly worse performance. While not the most numerically stable summation technique (e.g., compensated summation techniques such as the Kahan–Babuška-Neumaier algorithm are generally more numerically stable), pairwise summation strikes a reasonable balance between numerical stability and performance. If either numerical stability or performance is more desirable for your use case, consider alternative summation techniques.

    Examples

    var randu = require( '@stdlib/random-base-randu' );
    var round = require( '@stdlib/math-base-special-round' );
    var Float64Array = require( '@stdlib/array-float64' );
    var dsumpw = require( '@stdlib/blas-ext-base-dsumpw' );
    
    var x;
    var i;
    
    x = new Float64Array( 10 );
    for ( i = 0; i < x.length; i++ ) {
        x[ i ] = round( randu()*100.0 );
    }
    console.log( x );
    
    var v = dsumpw( x.length, x, 1 );
    console.log( v );

    References

    • Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." SIAM Journal on Scientific Computing 14 (4): 783–99. doi:10.1137/0914050.

    See Also


    Notice

    This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

    For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

    Community

    Chat


    License

    See LICENSE.

    Copyright

    Copyright © 2016-2022. The Stdlib Authors.

    Install

    npm i @stdlib/blas-ext-base-dsumpw

    Homepage

    stdlib.io

    DownloadsWeekly Downloads

    499

    Version

    0.0.8

    License

    Apache-2.0

    Unpacked Size

    70.1 kB

    Total Files

    19

    Last publish

    Collaborators

    • stdlib-bot
    • kgryte
    • planeshifter
    • rreusser