About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Math iterators for special functions.
npm install @stdlib/math-iter-special
var ns = require( '@stdlib/math-iter-special' );
Namespace containing math iterators for special functions.
var iterators = ns;
// returns {...}
The namespace contains the following functions for creating iterator protocol-compliant iterators:
-
iterAbs( iterator )
: create an iterator which iteratively computes the absolute value. -
iterAbs2( iterator )
: create an iterator which iteratively computes the squared absolute value. -
iterAcos( iterator )
: create an iterator which iteratively computes the arccosine. -
iterAcosh( iterator )
: create an iterator which iteratively computes the hyperbolic arccosine. -
iterAcot( iterator )
: create an iterator which iteratively computes the inverse cotangent. -
iterAcoth( iterator )
: create an iterator which iteratively computes the inverse hyperbolic cotangent. -
iterAcovercos( iterator )
: create an iterator which iteratively computes the inverse coversed cosine. -
iterAcoversin( iterator )
: create an iterator which iteratively computes the inverse coversed sine. -
iterAhavercos( iterator )
: create an iterator which iteratively computes the inverse half-value versed cosine. -
iterAhaversin( iterator )
: create an iterator which iteratively computes the inverse half-value versed sine. -
iterAsin( iterator )
: create an iterator which iteratively computes the arcsine. -
iterAsinh( iterator )
: create an iterator which iteratively computes the hyperbolic arcsine. -
iterAtan( iterator )
: create an iterator which iteratively computes the arctangent. -
iterAtan2( y, x )
: create an iterator which iteratively computes the angle in the plane (in radians) between the positive x-axis and the ray from(0,0)
to the point(x,y)
. -
iterAtanh( iterator )
: create an iterator which iteratively computes the hyperbolic arctangent. -
iterAvercos( iterator )
: create an iterator which iteratively computes the inverse versed cosine. -
iterAversin( iterator )
: create an iterator which iteratively computes the inverse versed sine. -
iterBesselj0( iterator )
: create an iterator which iteratively evaluates the Bessel function of the first kind of order zero. -
iterBesselj1( iterator )
: create an iterator which iteratively evaluates the Bessel function of the first kind of order one. -
iterBessely0( iterator )
: create an iterator which iteratively evaluates the Bessel function of the second kind of order zero. -
iterBessely1( iterator )
: create an iterator which iteratively evaluates the Bessel function of the second kind of order one. -
iterBeta( x, y )
: create an iterator which iteratively evaluates the beta function. -
iterBetaln( x, y )
: create an iterator which iteratively evaluates the natural logarithm of the beta function. -
iterBinet( iterator )
: create an iterator which iteratively evaluates Binet's formula extended to real numbers. -
iterCbrt( iterator )
: create an iterator which iteratively computes the cube root. -
iterCeil( iterator )
: create an iterator which rounds each iterated value toward positive infinity. -
iterCeil10( iterator )
: create an iterator which rounds each iterated value to the nearest power of 10 toward positive infinity. -
iterCeil2( iterator )
: create an iterator which rounds each iterated value to the nearest power of two toward positive infinity. -
iterCos( iterator )
: create an iterator which iteratively computes the cosine. -
iterCosh( iterator )
: create an iterator which computes the hyperbolic cosine for each iterated value. -
iterCosm1( iterator )
: create an iterator which computescos(x) - 1
for each iterated value. -
iterCospi( iterator )
: create an iterator which computes the cosine of each iterated value times π. -
iterCovercos( iterator )
: create an iterator which computes the coversed cosine for each iterated value. -
iterCoversin( iterator )
: create an iterator which computes the coversed sine for each iterated value. -
iterDeg2rad( iterator )
: create an iterator which converts an angle from degrees to radians for each iterated value. -
iterDigamma( iterator )
: create an iterator which evaluates the digamma function for each iterated value. -
iterDiracDelta( iterator )
: create an iterator which iteratively evaluates the Dirac delta function. -
iterEta( iterator )
: create an iterator which iteratively evaluates the Dirichlet eta function. -
iterEllipe( iterator )
: create an iterator which computes the complete elliptic integral of the second kind for each iterated value. -
iterEllipk( iterator )
: create an iterator which computes the complete elliptic integral of the first kind for each iterated value. -
iterErf( iterator )
: create an iterator which iteratively evaluates the error function. -
iterErfc( iterator )
: create an iterator which iteratively evaluates the complementary error function. -
iterErfcinv( iterator )
: create an iterator which iteratively evaluates the inverse complementary error function. -
iterErfinv( iterator )
: create an iterator which iteratively evaluates the inverse error function. -
iterExp( iterator )
: create an iterator which iteratively evaluates the natural exponential function. -
iterExp10( iterator )
: create an iterator which evaluates the base 10 exponential function for each iterated value. -
iterExp2( iterator )
: create an iterator which evaluates the base 2 exponential function for each iterated value. -
iterExpit( iterator )
: create an iterator which evaluates the standard logistic function for each iterated value. -
iterExpm1( iterator )
: create an iterator which computesexp(x) - 1
for each iterated value. -
iterExpm1rel( iterator )
: create an iterator which evaluates the relative error exponential for each iterated value. -
iterFactorial( iterator )
: create an iterator which iteratively evaluates the factorial function. -
iterFactorialln( iterator )
: create an iterator which iteratively evaluates the natural logarithm of the factorial function. -
iterFloor( iterator )
: create an iterator which rounds each iterated value toward negative infinity. -
iterFloor10( iterator )
: create an iterator which rounds each iterated value to the nearest power of 10 toward negative infinity. -
iterFloor2( iterator )
: create an iterator which rounds each iterated value to the nearest power of two toward negative infinity. -
iterFresnelc( iterator )
: create an iterator which computes the Fresnel integral C(x) for each iterated value. -
iterFresnels( iterator )
: create an iterator which computes the Fresnel integral S(x) for each iterated value. -
iterGamma( iterator )
: create an iterator which iteratively evaluates the gamma function. -
iterGamma1pm1( iterator )
: create an iterator which computesgamma(x+1) - 1
for each iterated value. -
iterGammaln( iterator )
: create an iterator which iteratively evaluates the natural logarithm of the gamma function. -
iterHacovercos( iterator )
: create an iterator which computes the half-value coversed cosine for each iterated value. -
iterHacoversin( iterator )
: create an iterator which computes the half-value coversed sine for each iterated value. -
iterHavercos( iterator )
: create an iterator which computes the half-value versed cosine for each iterated value. -
iterHaversin( iterator )
: create an iterator which computes the half-value versed sine for each iterated value. -
iterInv( iterator )
: create an iterator which iteratively computes the multiplicative inverse. -
iterLn( iterator )
: create an iterator which iteratively evaluates the natural logarithm. -
iterLog( x, b )
: create an iterator which iteratively computes the baseb
logarithm. -
iterLog10( iterator )
: create an iterator which iteratively evaluates the common logarithm (logarithm with base 10). -
iterLog1mexp( iterator )
: create an iterator which iteratively evaluates the natural logarithm of1-exp(-|x|)
. -
iterLog1p( iterator )
: create an iterator which iteratively evaluates the natural logarithm of1+x
. -
iterLog1pexp( iterator )
: create an iterator which iteratively evaluates the natural logarithm of1+exp(x)
. -
iterLog2( iterator )
: create an iterator which iteratively evaluates the binary logarithm. -
iterLogit( iterator )
: create an iterator which evaluates the logit function for each iterated value. -
iterPow( base, exponent )
: create an iterator which iteratively evaluates the exponential function. -
iterRad2deg( iterator )
: create an iterator which converts an angle from radians to degrees for each iterated value. -
iterRamp( iterator )
: create an iterator which iteratively evaluates the ramp function. -
iterZeta( iterator )
: create an iterator which evaluates the Riemann zeta function for each iterated value. -
iterRound( iterator )
: create an iterator which rounds each iterated value to the nearest integer. -
iterRound10( iterator )
: create an iterator which rounds each iterated value to the nearest power of 10 on a linear scale. -
iterRound2( iterator )
: create an iterator which rounds each iterated value to the nearest power of two on a linear scale. -
iterRsqrt( iterator )
: create an iterator which iteratively computes the reciprocal (inverse) square root. -
iterSignum( iterator )
: create an iterator which iteratively evaluates the signum function. -
iterSin( iterator )
: create an iterator which iteratively computes the sine. -
iterSinc( iterator )
: create an iterator which computes the normalized cardinal sine for each iterated value. -
iterSinh( iterator )
: create an iterator which evaluates the hyperbolic sine for each iterated value. -
iterSinpi( iterator )
: create an iterator which computes the sine of each iterated value times π. -
iterSpence( iterator )
: create an iterator which evaluates Spence's function for each iterated value. -
iterSqrt( iterator )
: create an iterator which iteratively computes the principal square root. -
iterSqrt1pm1( iterator )
: create an iterator which computessqrt(1+x) - 1
for each iterated value. -
iterTan( iterator )
: create an iterator which evaluates the tangent for each iterated value. -
iterTanh( iterator )
: create an iterator which evaluates the hyperbolic tangent for each iterated value. -
iterTrigamma( iterator )
: create an iterator which evaluates the trigamma function for each iterated value. -
iterTrunc( iterator )
: create an iterator which rounds each iterated value toward zero. -
iterTrunc10( iterator )
: create an iterator which rounds each iterated value to the nearest power of 10 toward zero. -
iterTrunc2( iterator )
: create an iterator which rounds each iterated value to the nearest power of two toward zero. -
iterVercos( iterator )
: create an iterator which computes the versed cosine for each iterated value. -
iterVersin( iterator )
: create an iterator which computes the versed sine for each iterated value.
var objectKeys = require( '@stdlib/utils-keys' );
var ns = require( '@stdlib/math-iter-special' );
console.log( objectKeys( ns ) );
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.