words-n-numbers

7.1.2 • Public • Published

Words'n'numbers

Tokenizing strings of text. Extracting arrays of words and optionally number, emojis, tags, usernames and email addresses from strings. For Node.js and the browser. When you need more than just [a-z] regular expressions. Part of document processing for search-index and nowsearch.xyz.

Inspired by extractwords

NPM version NPM downloads Build Status JavaScript Style Guide MIT License

Initiating

CJS

const { extract, words, numbers, emojis, tags, usernames, email } = require('words-n-numbers')
// extract, words, numbers, emojis, tags, usernames, email available

ESM

import { extract, words, numbers, emojis, tags, usernames, email } from ('words-n-numbers')
// extract, words, numbers, emojis, tags, usernames, email available

Browser

<script src="words-numbers.umd.js"></script>

<script>
  //wnn.extract, wnn.words, wnn.numbers, wnn.emojis, wnn.tags, wnn.usernames, wnn.email available
</script>

Browser demo

A simple browser demo of wnn to show how it works.

Screenshot of the words-n-numbers demo

Use

The default regex should catch every unicode character from for every language.

Only words

const stringOfWords = 'A 1000000 dollars baby!'
extract(stringOfWords)
// returns ['A', 'dollars', 'baby']

Only words, converted to lowercase

const stringOfWords = 'A 1000000 dollars baby!'
extract(stringOfWords, { toLowercase: true })
// returns ['a', 'dollars', 'baby']

Combining predefined regex for words and numbers, converted to lowercase

const stringOfWords = 'A 1000000 dollars baby!'
extract(stringOfWords, { regex: [words, numbers], toLowercase: true })
// returns ['a', '1000000', 'dollars', 'baby']

Combining predefined regex for words and emoticons, converted to lowercase

const stringOfWords = 'A ticket to 大阪 costs ¥2000 👌😄 😢'
extract(stringOfWords, { regex: [words, emojis], toLowercase: true })
// returns [ 'A', 'ticket', 'to', '大阪', 'costs', '👌😄', '😢' ]

Combining predefined regex for numbers and emoticons

const stringOfWords = 'A ticket to 大阪 costs ¥2000 👌😄 😢'
extract(stringOfWords, { regex: [numbers, emojis], toLowercase: true })
// returns [ '2000', '👌😄', '😢' ]

Combining predefined regex for words, numbers and emoticons, converted to lowercase

cons stringOfWords = 'A ticket to 大阪 costs ¥2000 👌😄 😢'
extract(stringOfWords, { regex: [words, numbers, emojis], toLowercase: true })
// returns [ 'a', 'ticket', 'to', '大阪', 'costs', '2000', '👌😄', '😢' ]

Predefined regex for #tags

const stringOfWords = 'A #49ticket to #大阪 or two#tickets costs ¥2000 👌😄😄 😢'
extract(stringOfWords, { regex: tags, toLowercase: true })
// returns [ '#49ticket', '#大阪' ]

Predefined regex for @usernames

const stringOfWords = 'A #ticket to #大阪 costs bob@bob.com, @alice and @美林 ¥2000 👌😄😄 😢'
extract(stringOfWords, { regex: usernames, toLowercase: true })
// returns [ '@alice123', '@美林' ]

Predefined regex for email addresses

const stringOfWords = 'A #ticket to #大阪 costs bob@bob.com, alice.allison@alice123.com, some-name.nameson.nameson@domain.org and @美林 ¥2000 👌😄😄 😢'
extract(stringOfWords, { regex: email, toLowercase: true })
// returns [ 'bob@bob.com', 'alice.allison@alice123.com', 'some-name.nameson.nameson@domain.org' ]

Custom regex

Some characters needs to be escaped, like \and '. And you escape it with a backslash - \.

const stringOfWords = 'This happens at 5 o\'clock !!!'
extract(stringOfWords, { regex: '[a-z\'0-9]+' })
// returns ['This', 'happens', 'at', '5', 'o\'clock']

API

Extract function

Returns an array of words and optionally numbers.

extract(stringOfText, \<options-object\>)

Options object

{
  regex: 'custom or predefined regex',  // defaults to words
  toLowercase: [true / false]             // defaults to false
}

Order of combined regexes

You can add an array of different regexes or just a string. If you add an array, they will be joined with a |-separator, making it an OR-regex. Put the email, usernames and tags before words to get the extraction right.

// email addresses before usernames before words can give another outcome than
extract(oldString, { regex: [email, usernames, words] })

// than words before usernames before email addresses
extract(oldString, { regex: [words, usernames, email] })

Predefined regex'es

words              // only words, any language <-- default
numbers            // only numbers
emojis             // only emojis
tags               // #tags (any language
usernames          // @usernames (any language)
email              // email addresses. Most valid addresses,
                   //   but not to be used as a validator

Languages supported

Supports most languages supported by stopword, and others too. Some languages like Japanese and Chinese simplified needs to be tokenized. May add tokenizers at a later stage.

PR's welcome

PR's and issues are more than welcome =)

Install

npm i words-n-numbers

DownloadsWeekly Downloads

93

Version

7.1.2

License

MIT

Unpacked Size

212 kB

Total Files

19

Last publish

Collaborators

  • eklem