Typescript doesn't have runtime types, all the type information is erased at the transpile stage. And since the version 5 there is no more Reflect support neither. Here is a simple schemas definition library that lets you keep types metadata at run time, infer Typescript types from those schemas and convert raw JSON/object data to predefined structured types
npm i typizator
Nothing better than tests to show how the library works. Simply read these tests and you'll know how to use this.
Examples with few comments is still better than just code...
Every primitive or complex schema has the .unbox
method to transform something that can be a string or some non-exact type to the strict type defined by the schema.
Primitive types used in this library are actually:
-
intS
representing integernumber
(if the source is a floating-point type, it's rounded to an integer, if it's too big, an error is thrown) -
bigintS
representing abigint
-
floatS
representing a floating-pointnumber
-
stringS
representing astring
-
dateS
representing adate
-
boolS
representing aboolean
By default, the type of the resulting transformation is nullable, it means that for example the type of intS.unbox(<something>)
will be number | null
. To make it strictly a number
you name to mark it as intS.notNull
.
You can combine primitive (and combined) fields to create objects' schemas using the objectS
schema factory. Let's take tests as an example:
// We define the type schema
const simpleRecordS = objectS({
id: bigintS.notNull,
name: stringS
})
// In the source type the primitives can be transformed to match the types of the schema:
expect(
simpleRecordS.unbox({
id: "12345678901234567890",
name: "Any name"
}))
.toEqual({
id: 12345678901234567890n,
name: "Any name"
})
// Because you market the id field as .not null, the compiler will display an error if you try to make it null
// The name field is not marked, so it's perfectly fine
expect(simpleRecordS.unbox({
id: 12345678901234567890n,
name: null
}))
.toEqual({
id: 12345678901234567890n,
name: null
})
// The whole simpleRecordS is not marked as .notNull neither, so it can be transformed from null too
expect(simpleRecordS.unbox(null))
.toEqual(null)
Some fields can be market as .optional
, then they are not required during the transformation and can be unboxed from undefined
:
const simpleRecordS = objectS({
id: bigintS.notNull,
name: stringS.optional
})
expect(simpleRecordS.unbox({
id: 12345678901234567890n
}))
.toEqual({
id: 12345678901234567890n,
name: undefined
});
expect(simpleRecordS.unbox({
id: 12345678901234567890n
}))
.toEqual({
id: 12345678901234567890n
})
When you write a schema, you don't need to repeat it in the type definition, Typescript transforms it for you:
const simpleRecordS = objectS({
id: bigintS.notNull,
name: stringS
})
type SimpleRecord = InferTargetFromSchema<typeof simpleRecordS>
...then the SimpleRecord
type becomes
{
id: bigint,
name: string | null
}
You can unbox an entire object from a JSON string:
const simpleRecordS = objectS({
id: bigintS.notNull,
name: stringS
})
// The source loosely-typed JSON is correctly transformed to a well-typed object
expect(
simpleRecordS.unbox(`{ "id": "12345678901234567890", "name": "Any name" }`)
)
.toEqual({
id: 12345678901234567890n,
name: "Any name"
})
// If you try to pass an unexpected null value, the `unbox` method throws an exception
expect(
() => simpleRecordS.unbox(`{ "id": null, "name": 12345678901234567890 }`)
)
.toThrow("Unboxing id, value: null: Null not allowed");
// An exception is also thrown if a non-`.optional` field is missing
expect(
() => simpleRecordS.unbox(`{ "id": 12345678901234567890 }`)
)
.toThrow("Unboxing name, value: undefined: Field missing")
// ...but nulls are perfectly accepted if the schema allows them
expect(
simpleRecordS.unbox(`null`)
).toBeNull()
const validatedRecordS = objectS({
zeroIfNull: bigintS.byDefault(0n).optional,
errorIfNull: bigintS.byDefault(Error()).optional,
specificErrorIfNull: bigintS.byDefault(Error("NULL")).optional,
errorIfNegative: bigintS.byDefault(Error(), source => BigInt(source) < 0).optional,
stringWithPrefix: stringS.byDefault((source: any) => `prefix-${source}`, always).optional
})
// Null is replaced by zero if required
expect(
validatedRecordS.unbox({ zeroIfNull: null })
).toEqual({
zeroIfNull: 0n
})
// If needed, a null value can throw an exception on unboxing
expect(
() => validatedRecordS.unbox({ errorIfNull: null })
).toThrow(Error)
// You can define a specific error if needed
expect(() => validatedRecordS.unbox({
specificErrorIfNull: null
})).toThrow("NULL")
// You can make more complex validity checks
expect(() => validatedRecordS.unbox({
errorIfNegative: -1
})).toThrow(Error)
// You can use defaults as value transformers
expect(validatedRecordS.unbox({
stringWithPrefix: "str"
})).toEqual({
stringWithPrefix: "prefix-str"
})
You can transform arrays of values (primitives or complex) using the arrayS
schema:
const arrayOfStrings = arrayS(stringS).notNull
const unboxed = arrayOfStrings.unbox(["one", null, "fourty-two"])
expect(unboxed[2]).toEqual("fourty-two")
expect(unboxed[1]).toBeNull()
...and the transformation from JSON also works:
const arrayOfStrings = arrayS(stringS.notNull)
const unboxed = arrayOfStrings.unbox(`["one", "two", "fourty-two"]`)
expect(unboxed![2]).toEqual("fourty-two")
You can transform dictionaries mapping strings to objects using the dictionaryS
schema:
const dictionaryOfStrings = dictionaryS(stringS).notNull
const unboxed = dictionaryOfStrings.unbox({ "un": "one", "deux": null, trois: "fourty-two" })
expect(unboxed["trois"]).toEqual("fourty-two")
expect(unboxed.deux).toBeNull()
expect(unboxed.un).toEqual("one")
...and the transformation from JSON also works:
const dictionaryOfStrings = dictionaryS(stringS.notNull)
const unboxed = dictionaryOfStrings.unbox(`{"un":"one", "deux":"two", "trois":"fourty-two"}`)
expect(unboxed!.trois).toEqual("fourty-two")
If you need to know at runtime the exact type of your schema's component (for serialization for example), you can use the schema's metadata:
const simpleRecordS = objectS({
id: bigintS.notNull,
name: stringS,
opt: intS.optional,
dateField: dateS.byDefault(new Date("1984-01-01")),
boolField: boolS,
floatField: floatS
})
expect(simpleRecordS.metadata.dataType).toEqual("object")
const fieldsMetadata = simpleRecordS.metadata
expect(fieldsMetadata.fields.size).toEqual(6)
expect(fieldsMetadata.fields.get("id")?.metadata.dataType).toEqual("bigint")
expect(fieldsMetadata.fields.get("id")?.metadata.notNull).toBeTruthy()
expect(fieldsMetadata.fields.get("name")?.metadata.notNull).toBeFalsy()
expect(fieldsMetadata.fields.get("opt")?.metadata.optional).toBeTruthy()
expect(fieldsMetadata.fields.get("dateField")?.metadata.dataType).toEqual("date")
expect(fieldsMetadata.fields.get("boolField")?.metadata.dataType).toEqual("bool")
expect(fieldsMetadata.fields.get("floatField")?.metadata.dataType).toEqual("float")
const simpleArrayS = arrayS(simpleRecordS)
expect(simpleArrayS.metadata.dataType).toEqual("array")
expect((simpleArrayS.metadata as ArrayMetadata).elements.metadata.dataType).toEqual("object")
You can also get the schema structure data as one string by calling getSchemaSignature
. For example the following schema:
const objectToSignS = objectS({
str: stringS.notNull,
num: intS.optional,
dat: dateS,
def: bigintS.byDefault(0n),
defOpt: stringS.byDefault("0").optional,
arr: arrayS(boolS).notNull
})
will have {str:string.NN,num:int.OPT,dat:date,def:bigint.DEF,defOpt:string.OPT.DEF,arr:bool[].NN}
as a signature
Sometimes, you need to define a well-typed API that is usable both on the client and on the server side. Schemas and type transformations allow you to do that:
// The API can be organised in "folders" to build hierarchies
const cruelApi = {
world: { args: [stringS.notNull], retVal: stringS.notNull }
}
// You can then add a sub-apis to your API
const simpleApiS = apiS({
meow: { args: [], retVal: stringS.notNull },
noMeow: { args: [] },
helloWorld: { args: [stringS.notNull, bigintS.notNull], retVal: stringS.notNull },
cruel: cruelApi
})
// The implementation is well-typed and doesn't let you violate your type schema
let isMeow = true;
const implementation = {
meow: async () => Promise.resolve("Miaou!"),
noMeow: async () => { isMeow = false; Promise.resolve(); },
helloWorld: async (name: string, id: bigint) => Promise.resolve(`Hello ${name}, your id is ${id + 1n}`),
cruel: {
world: async (val: string) => Promise.resolve(`${val}, this world is cruel`)
}
}
const caller: ApiImplementation<typeof simpleApiS> = implementation
expect(await caller.meow()).toEqual("Miaou!")
await caller.noMeow()
expect(isMeow).toBeFalsy()
expect(await caller.helloWorld("test", 12345678901234567890n))
.toEqual("Hello test, your id is 12345678901234567891")
expect(await caller.cruel.world("Oyvey")).toEqual("Oyvey, this world is cruel")
expect(simpleApiS.metadata.dataType).toEqual("api")
expect(helloWorld.dataType).toEqual("function")
expect(helloWorld.args[0].metadata.dataType).toEqual("string")
expect(helloWorld.args[1].metadata.dataType).toEqual("bigint")
expect(helloWorld.args[1].unbox("42")).toEqual(42n)
expect(helloWorld.retVal.metadata.dataType).toEqual("string")
expect(simpleApiS.metadata.implementation.meow.retVal.metadata.dataType).toEqual("string")
In some cases, especially when writing tests, it's prettier to represent your data as a table with fields separated by tabs or spaces.
Let's define a type schema:
const tabS = objectS({
id: bigintS,
name: stringS,
d1: intS.optional,
d2: stringS.optional,
arr: arrayS(stringS).optional
})
We can then create arrays of well-typed objects from this schema as follows:
// If a string contains spaces, it has to be quoted
expect(tabularInput(tabS,`
name id
"good will" 42
any 0
`)).toEqual(
[
{ name: "good will", id: 42n },
{ name: "any", id: 0n }
]
)
We often need to fill some fields with default values for each row:
expect(tabularInput(tabS, `
name id
"good will" 42
any 0
`, { d1: 1, d2: "q" }
)).toEqual(tabularInput(tabS, `
name id d1 d2
"good will" 42 1 q
any 0 1 q
`
))
Nobody prevents us from using complex types as object fields:
expect(tabularInput(tabS, `
name id arr
"good will" 42 ["a","b"]
any 0 ["c"]
`
)).toEqual(
[
{ name: "good will", id: 42n, arr: ["a", "b"] },
{ name: "any", id: 0n, arr: ["c"] }
]
)
null
and undefined
values will be transformed to corresponding types
expect(tabularInput(tabS, `
name id arr
null 42 ["a","b"]
any 0 undefined
`
)).toEqual(
[
{ name: null, id: 42n, arr: ["a", "b"] },
{ name: "any", id: 0n, arr: undefined }
]
)
...but if they are quoted, they are interpreted as strings:
expect(tabularInput(tabS, `
name id arr d2
"null" 42 ["a","b"] bulbul
any 0 [] undefined
`
)).toEqual(
[
{ name: "null", id: 42n, arr: ["a", "b"], d2: "bulbul" },
{ name: "any", id: 0n, arr: [] }
]
)
If you want to know how I wrote this library, refer to this article.