node package manager


Perform the Student's t hypothesis test


Perform the Student t hypothesis test

npm install ttest
var ttest = require('ttest');
// One sample t-test 
ttest([0,1,1,1], {mu: 1}).valid() // true 
// Two sample t-test 
ttest([0,1,1,1], [1,2,2,2], {mu: -1}).valid() // true 
var ttest = require('ttest');

The ttest module supports both one and two sample t-testing, and both equal and none equal variance.

If one array of data is given its a one sample t-test, and if two data arrays are given its a two sample t-test.

Note: instead of a data array a summary object can also be used.

In both cases you can also pass an extra optional object, there takes the following properties:

const options = {
  // Default: 0 
  // One sample case: this is the µ that the mean will be compared with. 
  // Two sample case: this is the ∂ value that the mean diffrence will be compared with. 
  mu: Number,
  // Default: false 
  // If true don't assume variance is equal and use the Welch approximation. 
  // This only applies of two samples are used. 
  varEqual: Boolean,
  // Default: 0.05 
  // The significance level of the test 
  alpha: Number,
  // Default "not equal" 
  // What should the alternative hypothesis be: 
  // - One sample case: could the mean be less, greater or not equal to mu property. 
  // - Two sample case: could the mean diffrence be less, greater or not equal to mu property. 
  alternative: "less" || "greater" || "not equal"

The t-test object is finally created by calling the ttest constructor.

const stat = ttest(sample, options);
const stat = ttest(sampleA, sampleB, options);

When the ttest object is created you can get the following information.

Returns the t value also called the statistic value.

Returns the p-value.

Returns an array containing the confidence interval, where the confidence level is calculated as 1 - options.alpha. Where the lower limit has index 0 and the upper limit has index 1. If the alternative hypothesis is less or greater one of the sides will be +/- Infinity.

Simply returns true if the p-value is greater or equal to the alpha value.

Returns the degrees of freedom used in the t-test.