track-assignement

1.3.1 • Public • Published

Track Assignement

This library is a core library made to do detection vs track assignement as done in Deep Sort

It is made to be used with the Kalman Filter library.

Installation

npm install track-assignement

Simple Example

The library proposes two core modules:

  • MatchingStage
  • TrackAssignement

Matching stage

Simple Intersection Over Union (IOU) matching

This performs a simple IOU matching between a list of detections and a list of given tracks

const MatchingStage = require('./lib/matching-stage');

const matchingStage = new MatchingStage({
  distances: { iou: (track, detection) => (1-map.iou(track[track.length -1], detection)},
  order: ["iou"],
  lambdas: {"iou": 1},
  thresholds: {"iou": 1}
});

const detections = [[22, 33, 20, 20],  [22, 33, 20, 20]];

const tracks = [
     [
        [22, 33, 20, 20],// x, y, w, h
        [22, 33, 20, 20],
        [22, 33, 20, 20],
        [22, 33, 20, 20]
    ],
    [
        [23, 33, 20, 20],// x, y, w, h
        null,
        [23, 35, 22, 20],
        [39, 35, 20, 26]
    ]
];

const newTracks = matchingStage.match({detections, tracks})

Combination of different metrics

Matching a list of detections and a list of given tracks, with an association of different metrics: mahalanobis distance for the Kalman Filter, and an appearance metric (by default, the cosine distance)

const matchingStage = new MatchingStage({
  distances: {
     kf: {
        mapTrack: ((track, opts) => kf.predict({
  					previousCorrected: new State({
  						mean: track[track.length - 1],
  					})
  				})),
        fn: ((predicted, detection, opts) => predicted.malahanobis(detection))
     },
    appearance: {
      dimension: 128,
      gallerySize: 300,
      fn: "cos", // by default dist is cos
      distMode: gallerySize //by default gallerySize (could use a mobile average)
    },
  },
  lambdas: {
    "kf": 0,
    "appearance": 1 // appearance.lambda + mahalanobis.lambda = 1
  },
  thresholds: {
    "kf": 0.5,
    "appearance": 0.5
  }
});

const detections = [
  {location: [22, 33, 20, 20], appearance: [<v0>, ..., <v127>]}, // We here use an appearance vector with 128 features
  {location: [22, 22, 12, 24], appearance: [<v0>, ..., <v127>]}
];

const tracks = [
     [
        {
  					state: {
  						mean: [25, 34, 21, 19],
  						covariance: [1, 1, 1, 1]
  					},  
  					appearance: [<v0>, ..., <v127>]
  				}
    ],
    [
        {
  					state: {
  						mean: [22, 25, 15, 25],
  						covariance: [1, 1, 1, 1]
  					},  
  					appearance: [<v0>, ..., <v127>]
  				}
    ]
];

const matches = matchingStage.match({detections, tracks}) // The combinations (i,j) of the matches between tracks[i] and detections[j]

Using multiple sensors for the matching cascade

In this case, we have 2 non-phased sensors which we use alternatively to make the matches

const detectionsByFrame = [
  [
    {location: [22, 33, null, null], appearance: [<v0>, ..., <v127>}, // xCam0, yCam0, xCam1, yCam1
    {location: [45, 35, null, null], appearance: [<v0>, ..., <v127>}
  ],[
    {location: [null, null, 20, 30], appearance: [<v0>, ..., <v127>} // xCam0, yCam0, xCam1, yCam1
    {location: [null, null, 40, 38], appearance: [<v0>, ..., <v127>}
  ],
  [
    {location: [22, 33, null, null], appearance: [<v0>, ..., <v127>}, // xCam0, yCam0, xCam1, yCam1
    {location: [45, 35, null, null], appearance: [<v0>, ..., <v127>}
  ],[
    {location: [null, null, 20, 30], appearance: [<v0>, ..., <v127>} // xCam0, yCam0, xCam1, yCam1
    {location: [null, null, 40, 38], appearance: [<v0>, ..., <v127>}
  ]
];

const times = [0, 0.1, 0.5, 0.6]

const malahanobisCustom = ({mappedTrack: predicted, detection, detectionId, index}) => {
  const raw = detectionsByFrame[index][detectionId];
  const rowsToRm = raw
     .map((value, index) =>  ({value, index}))
     .filter(({value}) => value === null)
     .map(({index}) => index);

  const projectedStateProjectionMatrix = removeRows(kf.dynamic.stateProjection, rowsToRm);

  const predictedOnNonNullObservation = State.matMul(predicted, projectedStateProjectionMatrix);
  const nonNullDetection = detection.filter((_, index) => !rowsToRm.includes(index));
  return predictedOnObservation.mahalanobis(nonNullDetection)
};

const globalMatching = new GlobalMatching({
  distances: {
     kf: {
        mapTrack: ((track, opts) => {
          return kf.predict({
             previousCorrected: new State(Object.assign(
                {},
                track[track.length - 1].state,
                index
              ))
          })
        }),
        fn: malahanobisCustom
     }
  },
  age: {
    max: 30,
    min: 3
  },
  order: ["kf"],
  lambdas: {"kf": 1},
  thresholds: {"kf": 0.5},
  	matchToTrackItem({trackId, detection, kf: {mappedTrack: predicted}, index, detectionId}) => {
        return {
          state: kf.correct({
            predicted,
            observation: detection
          })),
          raw: detectionsByFrame[index][detectionId]
        }
      }
});

const tracks = [
     [
        {
          state: {mean: [[22],[33]], covariance: [[1, 0], [0, 1]]},
          raw: [22, 33, null, null]
        }
    ],
    [
        {
          state: {mean: [[45], [35]], covariance: [[1, 0], [0, 1]]},
          raw: [45, 35, null, null]
        }
    ]
];

const index = 1; // index === tracks[i].length for every track
const zeroFrame1Detections = detectionsByFrame[1].map(detections => detections.map(d => d === null ? d : 0))

//@typedef {Object} Match
//@property {Number} detectionId
//@property {Number} trackId

//@returns {Array.<Match>}
const {matched} = globalMatching.match({detections: zeroFrame1Detections, tracks})

Global Matching

Global Matching enables to do several matching stages, followed by a final matching stage, making the matching system more robust In this example, we track all the detectionsByIteration

const globalMatching = new GlobalMatching({
  distances: {
     kf: {
        mapTrack: ((track, opts) => {
          return kf.predict({
             previousCorrected: new State(Object.assign(
                {},
                track[track.length - 1].state,
                index
              ))
          })
        }),
        fn: malahanobisCustom
     },
     appearance: {
        mapTrack: ((track, opts) => {
          return track.appearance
        }),
        mapDetection: ((detection, opts) => {
          return detection.appearance
        }),
        fn: ({mappedTrack, mappedDetection}) => cosDist(mappedTrack, mappedDetection)
     }
  },
	age: {
		min: 3, // min age to delete an unmatched detection
		max: 50 // Max age to keep an unmatched track
	},
	stages: [{ // Several matchingStages
		order: ['appearance'],
		lambdas: {
			appearance: 0.9
		},
		thresholds: {
			appearance: 0.3
		},
		ageMode: 'ascendant',
		maxAge: null
	},
	{
		order: ['kf'],
		lambdas: {
			kf: 1
		},
		thresholds: {
			kf: 5
		},
		ageMode: 'all',
		maxAge: 3
	}],
	matchToTrackItem({trackId, detection, kf: {mappedTrack: predicted}, index, detectionId}) => {
			return {
				state: kf.correct({
					predicted,
					observation: detection
				})),
				raw: detectionsByFrame[index][detectionId]
			}
		}
});

const {tracks: newTracks} = GlobalMatching.track({detectionsByIteration, tracks});

Package Sidebar

Install

npm i track-assignement

Weekly Downloads

1

Version

1.3.1

License

MIT

Unpacked Size

118 kB

Total Files

56

Last publish

Collaborators

  • piercus