Get unlimited public & private packages + package-based permissions with npm Pro.Get started »

neverthrow

2.2.0 • Public • Published

NeverThrow 🙅

Build Status

Description

Encode failure into your program.

This package contains a Result type that represents either success (Ok) or failure (Err).

neverthrow also exposes an api for chaining sequential asynchronous tasks (docs below).

Read the blog post which explains why you'd want to use this package.

This package works for both JS and TypeScript. However, the types that this package provides will allow you to get compile-time guarantees around error handling if you are using TypeScript.

neverthrow draws inspiration from Rust, and Elm. It is also a great companion to fp-ts.

Need to see real-life examples of how to leverage this package for error handling? See this repo: https://github.com/parlez-vous/server

Installation

> npm install neverthrow

Usage

Create Ok or Err instances with the ok and err functions.

import { ok, err } from 'neverthrow'
 
// something awesome happend
 
const yesss = ok(someAesomeValue)
 
// moments later ...
 
const mappedYes = yesss.map(doingSuperUsefulStuff)

Result is defined as follows:

type  Result<T, E>
  =  Ok<T, E>
  |  Err<T, E>

Ok<T, E>: contains the success value of type T

Err<T, E>: contains the failure value of type E

Top-Level API

neverthrow exposes the following:

  • ok convenience function to create an Ok variant of Result
  • err convenience function to create an Err variant of Result
  • Ok class for you to construct an Ok variant in an OOP way using new
  • Err class for you to construct an Err variant in an OOP way using new
  • Result type - only available in TypeScript
  • chain and all of its variants (docs below) - for chaining sequential asynchronous operations that return Results
import { ok, Ok, err, Err, Result } from 'neverthrow'
 
// chain api available as well
import {
  chain,
  chain3,
  chain4,
  chain5,
  chain6,
  chain7,
  chain8
} from 'neverthrow'

API

ok

Constructs an Ok variant of Result

Signature:

ok<T, E>(value:  T)Ok<T, E> { ... }

Example:

import { ok } from 'neverthrow'
 
const myResult = ok({ myData: 'test' }) // instance of `Ok`
 
myResult.isOk() // true
myResult.isErr() // false

err

Constructs an Err variant of Result

Signature:

err<T, E>(err:  E):  Err<T, E> { ... }

Example:

import { err } from 'neverthrow'
 
const myResult = err('Oh noooo') // instance of `Err`
 
myResult.isOk() // false
myResult.isErr() // true

Result.isOk (method)

Returns true if the result is an Ok variant

Signature:

isOk():  boolean { ... }

Result.isErr (method)

Returns true if the result is an Err variant

Signature:

isErr():  boolean { ... }

Result.map (method)

Maps a Result<T, E> to Result<U, E> by applying a function to a contained Ok value, leaving an Err value untouched.

This function can be used to compose the results of two functions.

Signature:

type MapFunc = <T>(f: T) => U
map<U>(fn: MapFunc):  Result<U, E> { ... }

Example:

const { getLines } from 'imaginary-parser'
// ^ assume getLines has the following signature:
// getLines(str: string): Result<Array<string>, Error>
 
// since the formatting is deemed correct by `getLines`
// then it means that `linesResult` is an Ok
// containing an Array of strings for each line of code
const linesResult = getLines('1\n2\n3\n4\n')
 
// this Result now has a Array<number> inside it
const newResult = linesResult.map(
  (arr: Array<string>) => arr.map(parseInt)
)
 
newResult.isOk() // true

Result.mapErr (method)

Maps a Result<T, E> to Result<T, F> by applying a function to a contained Err value, leaving an Ok value untouched.

This function can be used to pass through a successful result while handling an error.

Signature:

type MapFunc = <E>(e: E) => F
mapErr<U>(fn: MapFunc):  Result<T, F> { ... }

Example:

import { parseHeaders } 'imaginary-http-parser'
// imagine that parseHeaders has the following signature:
// parseHeaders(raw: string): Result<SomeKeyValueMap, ParseError>
 
const rawHeaders = 'nonsensical gibberish and badly formatted stuff'
 
const parseResult = parseHeaders(rawHeaders)
 
parseResult.mapErr(parseError => {
  res.status(400).json({
    error: parseError
  })
})
 
parseResult.isErr() // true

Result.andThen (method)

Same idea as map above. Except you must return a new Result.

This is useful for when you need to do a subsequent computation using the inner T value, but that computation might fail.

andThen is really useful as a tool to flatten a Result<Result<A, E2>, E1> into a Result<A, E2> (see example below).

Signature:

type ExtendFunc = (t:  T) => Result<U, E>
extend<U>(f: ExtendFunc)Result<U, E> { ... }

Example 1: Chaining Results

import { err, ok } from 'neverthrow'
 
const sq = (n: number): Result<number, number> => ok(n ** 2)
 
ok(2).andThen(sq).andThen(sq) // Ok(16)
 
ok(2).andThen(sq).andThen(err) // Err(4)
 
ok(2).andThen(err).andThen(sq) // Err(2)
 
err(3).andThen(sq).andThen(sq) // Err(3)

Example 2: Flattening Nested Results

// It's common to have nested Results
const nested = ok(ok(1234))
 
// notNested is a Ok(1234)
const notNested = nested.andThen(innerResult => innerResult)

Result.match (method)

Given 2 functions (one for the Ok variant and one for the Err variant) execute the function that matches the Result variant.

Match callbacks do not necessitate to return a Result, however you can return a Result if you want to.

Signature:

match<A>(
  okFn: (t:  T) =>  A,
  errFn: (e:  E) =>  A
)A => { ... }

match is like chaining map and mapErr, with the distinction that with match both functions must have the same return type.

Example:

const result = computationThatMightFail()
 
const successCallback = (someNumber: number) => {
  console.log('> number is: ', someNumber)
}
 
const failureCallback = (someFailureValue: string) => {
  console.log('> boooooo')
}
 
// method chaining api
// note that you DONT have to append mapErr
// after map which means that you are not required to do
// error handling
result
  .map(successCallback)
  .mapErr(failureCallback)
 
 
// match api
// works exactly the same as above,
// except, now you HAVE to do error handling :)
myval.match(
  successCallback,
  failureCallback
)

Result.asyncMap (method)

Similar to map except for two things:

  • the mapping function must return a Promise
  • asyncMap returns a Promise

Check out the chain API. If you need to chain multiple Promise<Result> type of computations together, chain is what you need. asyncMap is only suitable for doing a single async computation, not many sequential computations.

Signature:

type MappingFunc = (t:  T) => Promise<U>
asyncMap<U>(fn: MappingFunc):  Promise<Result<U, E>> { ... }

Example:

import { parseHeaders } 'imaginary-http-parser'
// imagine that parseHeaders has the following signature:
// parseHeaders(raw: string): Result<SomeKeyValueMap, ParseError>
 
const promise = parseHeaders(rawHeader)
  .map(headerKvMap => headerKvMap.Authorization)
  .asyncMap(findUserInDatabase)

Note that in the above example if parseHeaders returns an Err then .map and .asyncMap will not be invoked, and promise variable will contain a Err inside of the promise.


Result._unsafeUnwrap (method)

Returns the inner Ok value.

Try to avoid unwrapping Results, as it defeats the purpose of using Results in the first place.

Ironically, this function will throw if the Result is an Err.

import { ok } from 'neverthrow'
 
const result = ok(12)
 
const twelve = result._unsafeUnwrap()

Result._unsafeUnwrapErr (method)

Returns the inner Err value.

Try to avoid unwrapping Results, as it defeats the purpose of using Results in the first place.

Ironically, this function will throw if the Result is an Ok.

import { err } from 'neverthrow'
 
const result = err(12)
 
const twelve = result._unsafeUnwrapErr()

🔗

Chaining API

Examples can be found in the tests directory

The chain functions allow you to create sequential execution flows for asynchronous tasks in a very elegant way.

If you try to create sequential execution flows for, say 3 or more, async tasks using the asyncMap method, you will end up with nested code (hello callback hell) and a lot of manually unwrapping promises using await.

chain takes care of unwrapping Promises for you.

Chains have short-circuit behaviour:

One of the properties of the chain api (thanks to the way Results work), is that the chain returns early (or short circuits) once any computation returns a Err variant.

All chain functions require that:

  • the first argument be a promise with Result inside it.
  • the last argument be a function that returns a promise with Result inside it.

All arguments in between the first and the last do not need to be async! You'll see this in the function signatures of chain3, chain4, chain5, etc ...

Here's an example using chain4 (source):

import { ok, chain4 } from 'neverthrow'
 
// ...
  chain4(
    sessionManager.getSessionUser(),
    ({ id }) => getSingleSite(id, siteId),
    fetchSiteWithComments,
    (siteWithComments) => Promise.resolve(
      ok(buildSite(siteWithComments))
    ),
  )

chain

Signature:

<T1T2E>(
  r1Promise<Result<T1, E>>,
  r2: (v: T1) => Promise<Result<T2, E>>,
)Promise<Result<T2, E>> => { ... }

The above in plain english:

  • given a computation r1
  • evaluate r2 with the Ok value of r1 as r2`'s argument.
    • If r1 ends up being an Err value, then do not evaluate r2, and instead return the Err

chain3

Signature:

<T1T2T3E>(
  r1Promise<Result<T1, E>>,
  r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
  r3: (v: T2) => Promise<Result<T3, E>>,
)Promise<Result<T3, E>> => { ... }

Same thing as chain, except now you have a middle computation which can be either synchronous or asynchronous.

chain4

Signature:

<T1T2T3T4E>(
  r1Promise<Result<T1, E>>,
  r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
  r3: (v: T2) => Promise<Result<T3, E>> | Result<T3, E>,
  r4: (v: T3) => Promise<Result<T4, E>>,
)Promise<Result<T4, E>> => { ... }

Same thing as chain, except now you have 2 middle computations; any of which can be either synchronous or asynchronous.

chain5

Signature:

<T1T2T3T4T5E>(
  r1Promise<Result<T1, E>>,
  r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
  r3: (v: T2) => Promise<Result<T3, E>> | Result<T3, E>,
  r4: (v: T3) => Promise<Result<T4, E>> | Result<T4, E>,
  r5: (v: T4) => Promise<Result<T5, E>>,
)Promise<Result<T5, E>> => { ... }

Same thing as chain, except now you have 3 middle computations; any of which can be either synchronous or asynchronous.

chain6

Signature:

<T1T2T3T4T5T6E>(
  r1Promise<Result<T1, E>>,
  r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
  r3: (v: T2) => Promise<Result<T3, E>> | Result<T3, E>,
  r4: (v: T3) => Promise<Result<T4, E>> | Result<T4, E>,
  r5: (v: T4) => Promise<Result<T5, E>> | Result<T5, E>,
  r6: (v: T5) => Promise<Result<T6, E>>,
)Promise<Result<T6, E>> => {

Same thing as chain, except now you have 4 middle computations; any of which can be either synchronous or asynchronous.

chain7

Signature:

<T1T2T3T4T5T6T7E>(
  r1Promise<Result<T1, E>>,
  r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
  r3: (v: T2) => Promise<Result<T3, E>> | Result<T3, E>,
  r4: (v: T3) => Promise<Result<T4, E>> | Result<T4, E>,
  r5: (v: T4) => Promise<Result<T5, E>> | Result<T5, E>,
  r6: (v: T5) => Promise<Result<T6, E>> | Result<T6, E>,
  r7: (v: T6) => Promise<Result<T7, E>>,
)Promise<Result<T7, E>> => { ... }

Same thing as chain, except now you have 5 middle computations; any of which can be either synchronous or asynchronous.

chain8

Signature:

<T1T2T3T4T5T6T7T8E>(
  r1Promise<Result<T1, E>>,
  r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
  r3: (v: T2) => Promise<Result<T3, E>> | Result<T3, E>,
  r4: (v: T3) => Promise<Result<T4, E>> | Result<T4, E>,
  r5: (v: T4) => Promise<Result<T5, E>> | Result<T5, E>,
  r6: (v: T5) => Promise<Result<T6, E>> | Result<T6, E>,
  r7: (v: T6) => Promise<Result<T7, E>> | Result<T7, E>,
  r8: (v: T7) => Promise<Result<T8, E>>,
)Promise<Result<T8, E>> => { ... }

Same thing as chain, except now you have 5 middle computations; any of which can be either synchronous or asynchronous.

--

Wrapping a Dependency that throws

incomplete documenation ... Examples to come soon

  • axios
  • knex

A note on the Package Name

Although the package is called neverthrow, please don't take this literally. I am simply encouraging the developer to think a bit more about the ergonomics and usage of whatever software they are writing.

Throwing and catching is very similar to using goto statements - in other words; it makes reasoning about your programs harder. Secondly, by using throw you make the assumption that the caller of your function is implementing catch. This is a known source of errors. Example: One dev throws and another dev uses the function without prior knowledge that the function will throw. Thus, and edge case has been left unhandled and now you have unhappy users, bosses, cats, etc.

With all that said, there are definitely good use cases for throwing in your program. But much less than you might think.

Install

npm i neverthrow

DownloadsWeekly Downloads

2,553

Version

2.2.0

License

MIT

Unpacked Size

34.9 kB

Total Files

9

Last publish

Collaborators

  • avatar