Node Packaged Masterfully

    This package has been deprecated

    Author message:

    This project has been closed beacuse of wrong Readme file

    mongoose-fuzzy-searching-v2

    3.0.2 • Public • Published

    Mongoose Fuzzy Searching

    mongoose-fuzzy-searching-v2 is simple and lightweight plugin that enables fuzzy searching in documents in MongoDB. This code is based on this article.

    Build Status License: MIT FOSSA Status

    Features

    Installation

    Install using npm

    npm i mongoose-fuzzy-searching-v2
    

    Usage

    Simple usage

    In the below example, we have a User collection and we want to make fuzzy searching in firstName and lastName.

    var mongoose_fuzzy_searching = require("mongoose-fuzzy-searching-v2");
     
    var UserSchema = new Schema({
      firstName: String,
      lastName: String,
      email: String,
      age: Number
    });
     
    UserSchema.plugin(mongoose_fuzzy_searching, {
      fields: ["firstName", "lastName"]
    });
     
    var User = mongoose.model("User", UserSchema);
     
    var user = new User({
      firstName: "Joe",
      lastName: "Doe",
      email: "joe.doe@mail.com",
      age: 30
    });
     
    user.save(function() {
      // mongodb: { ..., firstName_fuzzy: [String], lastName_fuzzy: [String] }
     
      User.fuzzySearch("jo", function(err, users) {
        console.error(err);
        console.log(users);
        // each user object will not contain the fuzzy keys:
        // Eg.
        // {
        //   "firstName": "Joe",
        //   "lastName": "Doe",
        //   "email": "joe.doe@mail.com",
        //   "age": 30,
        //   "confidenceScore": 34.3 ($text meta score)
        // }
      });
    });

    The results are sorted by the confidenceScore key. You can override this option.

    User.fuzzySearch("jo")
      .sort({ age: -1 })
      .exec(function(err, users) {
        console.error(err);
        console.log(users);
      });

    Plugin Options

    Options must have a fields key, which is an Array of Strings or an Array of Objects.

    var mongoose_fuzzy_searching = require("mongoose-fuzzy-searching-v2");
     
    var UserSchema = new Schema({
      firstName: String,
      lastName: String,
      email: String
    });
     
    UserSchema.plugin(mongoose_fuzzy_searching, {
      fields: ["firstName", "lastName"]
    });

    Object keys

    The below table contains the expected keys for an object

    Example:

    var mongoose_fuzzy_searching = require("mongoose-fuzzy-searching-v2");
     
    var UserSchema = new Schema({
      firstName: String,
      lastName: String,
      email: String,
      text: [
        {
          title: String,
          description: String,
          language: String
        }
      ]
    });

    fuzzySearch parameters

    fuzzySearch method can accept up to three parameters. The first one is the query, which can either be either a String or an Object. This parameter is required. The second parameter can either be eiter an Object with other queries, for example age: { $gt: 18 }, or a callback function. If the second parameter is the options, then the third parameter is the callback function. If you don't set a callback function, the results will be returned inside a Promise.

    Example:

    /* Without options and callback */
    Model.fuzzySearch("jo")
      .then(console.log)
      .catch(console.error);
    // or
    Model.fuzzySearch({ query: "jo" })
      .then(console.log)
      .catch(console.error);
    // with prefixOnly and minSize
    Model.fuzzySearch({ query: "jo", prefixOnly: true, minSize: 4 })
      .then(console.log)
      .catch(console.error);
     
    /* With options and without callback */
    Model.fuzzySearch("jo", { age: { $gt: 18 } })
      .then(console.log)
      .catch(console.error);
     
    /* With callback */
    Model.fuzzySearch("jo", function(err, doc) {
      if (err) {
        console.error(err);
      } else {
        console.log(doc);
      }
    });
     
    /* With options and callback */
    Model.fuzzySearch("jo", { age: { $gt: 18 } }, function(err, doc) {
      if (err) {
        console.error(err);
      } else {
        console.log(doc);
      }
    });

    Work with pre-existing data

    The plugin creates indexes for the selected fields. In the below example the new indexes will be firstName_fuzzy and lastName_fuzzy. Also, each document will have the fields firstName_fuzzy[String] and lastName_fuzzy[String]. These arrays will contain the anagrams for the selected fields.

    var mongoose_fuzzy_searching = require("mongoose-fuzzy-searching-v2");
     
    var UserSchema = new Schema({
      firstName: String,
      lastName: String,
      email: String,
      age: Number
    });
     
    UserSchema.plugin(mongoose_fuzzy_searching, {
      fields: ["firstName", "lastName"]
    });

    License

    MIT License

    Copyright (c) 2019 Vassilis Pallas

    Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

    FOSSA Status

    Install

    npm i mongoose-fuzzy-searching-v2

    DownloadsWeekly Downloads

    15

    Version

    3.0.2

    License

    MIT

    Unpacked Size

    44.7 kB

    Total Files

    9

    Last publish

    Collaborators

    • akash-gupta