npm

Ready to take your JavaScript development to the next level? Meet npm Enterprise - the ultimate in enterprise JavaScript. Learn more »

generatorics

1.1.0 • Public • Published

Generatorics

An efficient combinatorics library for JavaScript utilizing ES2015 generators. Generate combinations, permutations, and power sets of arrays or strings.

  • Node
npm install generatorics
var G = require('generatorics');
  • Browser
bower install generatorics
<script src="file/path/to/generatorics.js"></script>

Note: This module is not transpiled for compatibility, as it degrades the performance. Check your browser/node version.

Usage

power set

for (var subset of G.powerSet(['a', 'b', 'c'])) {
  console.log(subset);
}
// [ ]
// [ 'a' ]
// [ 'a', 'b' ]
// [ 'a', 'b', 'c' ]
// [ 'a', 'c' ]
// [ 'b' ]
// [ 'b', 'c' ]
// [ 'c' ]

permutation

for (var perm of G.permutation(['a', 'b', 'c'], 2)) {
  console.log(perm);
}
// [ 'a', 'b' ]
// [ 'a', 'c' ]
// [ 'b', 'a' ]
// [ 'b', 'c' ]
// [ 'c', 'a' ]
// [ 'c', 'b' ]
 
for (var perm of G.permutation(['a', 'b', 'c'])) { // assumes full length of array
  console.log(perm);
}
// [ 'a', 'b', 'c' ]
// [ 'a', 'c', 'b' ]
// [ 'b', 'a', 'c' ]
// [ 'b', 'c', 'a' ]
// [ 'c', 'b', 'a' ]
// [ 'c', 'a', 'b' ]

combination

for (var comb of G.combination(['a', 'b', 'c'], 2)) {
  console.log(comb);
}
// [ 'a', 'b' ]
// [ 'a', 'c' ]
// [ 'b', 'c' ]

For efficiency, each array being yielded is the same one being mutated on each iteration. DO NOT mutate the array.

var combs = [];
for (var comb of G.combination(['a', 'b', 'c'], 2)) {
  combs.push(comb);
}
console.log(combs);
// [ [ 'b', 'c' ], [ 'b', 'c' ], [ 'b', 'c' ] ]

You can clone if necessary, or use the clone submodule

permutation of combination

for (var perm of G.permutationCombination(['a', 'b', 'c'])) {
  console.log(perm);
}
// [ ]
// [ 'a' ]
// [ 'a', 'b' ]
// [ 'a', 'b', 'c' ]
// [ 'a', 'c' ]
// [ 'a', 'c', 'b' ]
// [ 'b' ]
// [ 'b', 'a' ]
// [ 'b', 'a', 'c' ]
// [ 'b', 'c' ]
// [ 'b', 'c', 'a' ]
// [ 'c' ]
// [ 'c', 'a' ]
// [ 'c', 'a', 'b' ]
// [ 'c', 'b' ]
// [ 'c', 'b', 'a' ]

cartesian product

for (var prod of G.cartesian([0, 1, 2], [0, 10, 20], [0, 100, 200])) {
  console.log(prod);
}
// [ 0, 0, 0 ],  [ 0, 0, 100 ],  [ 0, 0, 200 ]
// [ 0, 10, 0 ], [ 0, 10, 100 ], [ 0, 10, 200 ]
// [ 0, 20, 0 ], [ 0, 20, 100 ], [ 0, 20, 200 ]
// [ 1, 0, 0 ],  [ 1, 0, 100 ],  [ 1, 0, 200 ]
// [ 1, 10, 0 ], [ 1, 10, 100 ], [ 1, 10, 200 ]
// [ 1, 20, 0 ], [ 1, 20, 100 ], [ 1, 20, 200 ]
// [ 2, 0, 0 ],  [ 2, 0, 100 ],  [ 2, 0, 200 ]
// [ 2, 10, 0 ], [ 2, 10, 100 ], [ 2, 10, 200 ]
// [ 2, 20, 0 ], [ 2, 20, 100 ], [ 2, 20, 200 ]

base N

for (var num of G.baseN(['a', 'b', 'c'])) {
  console.log(num);
}
// [ 'a', 'a', 'a' ], [ 'a', 'a', 'b' ], [ 'a', 'a', 'c' ]
// [ 'a', 'b', 'a' ], [ 'a', 'b', 'b' ], [ 'a', 'b', 'c' ]
// [ 'a', 'c', 'a' ], [ 'a', 'c', 'b' ], [ 'a', 'c', 'c' ]
// [ 'b', 'a', 'a' ], [ 'b', 'a', 'b' ], [ 'b', 'a', 'c' ]
// [ 'b', 'b', 'a' ], [ 'b', 'b', 'b' ], [ 'b', 'b', 'c' ]
// [ 'b', 'c', 'a' ], [ 'b', 'c', 'b' ], [ 'b', 'c', 'c' ]
// [ 'c', 'a', 'a' ], [ 'c', 'a', 'b' ], [ 'c', 'a', 'c' ]
// [ 'c', 'b', 'a' ], [ 'c', 'b', 'b' ], [ 'c', 'b', 'c' ]
// [ 'c', 'c', 'a' ], [ 'c', 'c', 'b' ], [ 'c', 'c', 'c' ]

Clone Submodule

Each array yielded from the generator is actually the same array in memory, just mutated to have different elements. This is to avoid the unnecessary creation of a bunch of arrays, which consume memory. As a result, you get a strange result when trying to generate an array.

var combs = G.combination(['a', 'b', 'c'], 2);
console.log([...combs]);
// [ [ 'b', 'c' ], [ 'b', 'c' ], [ 'b', 'c' ] ]

Instead, you can use the clone submodule.

var combs = G.clone.combination(['a', 'b', 'c'], 2);
console.log([...combs]);
// [ [ 'a', 'b' ], [ 'a', 'c' ], [ 'b', 'c' ] ]

G.clone

This submodule produces generators that yield a different array on each iteration in case you need to mutate it. The combination, permutation, powerSet, permutationCombination, baseN, baseNAll, and cartesian methods are provided on this submodule.

Cool things to do with ES2015 generators

var combs = G.clone.combination([1, 2, 3], 2);
 
// "for-of" loop
for (let comb of combs) {
  console.log(comb);
}
 
// generate arrays
Array.from(combs);
[...combs];
 
// generate sets
new Set(combs);
 
// spreading in function calls
console.log(...combs);

Writing a code generator? Need to produce an infinite stream of minified variable names?

No problem! Just pass in a collection of all your valid characters and start generating.

var mininym = G.baseNAll('abcdefghijklmnopqrstuvwxyz$#')
var name = mininym.next().value.join('')
global[name] = 'some value'

Card games anyone?

var cards = [...G.clone.cartesian('♠♥♣♦', 'A23456789JQK')];
console.log(G.shuffle(cards));
// [ [ '♦', '6' ], [ '♠', '6' ], [ '♣', '7' ], [ '♥', 'K' ],
//   [ '♣', 'J' ], [ '♥', '4' ], [ '♦', '2' ], [ '♥', '9' ],
//   [ '♦', 'Q' ], [ '♠', 'Q' ], [ '♠', '4' ], [ '♠', 'K' ],
//   [ '♥', '3' ], [ '♥', '7' ], [ '♠', '5' ], [ '♦', '7' ],
//   [ '♥', '5' ], [ '♣', 'Q' ], [ '♣', '9' ], [ '♠', 'A' ],
//   [ '♣', '4' ], [ '♣', '3' ], [ '♥', 'A' ], [ '♥', '8' ],
//   [ '♣', '8' ], [ '♦', '8' ], [ '♠', '8' ], [ '♣', '5' ],
//   [ '♥', '2' ], [ '♥', 'Q' ], [ '♦', 'A' ], [ '♥', '6' ],
//   [ '♠', '2' ], [ '♣', '6' ], [ '♠', '3' ], [ '♦', 'K' ],
//   [ '♦', 'J' ], [ '♠', '7' ], [ '♥', 'J' ], [ '♦', '5' ],
//   [ '♦', '9' ], [ '♦', '3' ], [ '♠', '9' ], [ '♣', '2' ],
//   [ '♣', 'A' ], [ '♣', 'K' ], [ '♦', '4' ], [ '♠', 'J' ] ]

Documentation

G

G.factorial(n) ⇒ Number

Calculates a factorial

Kind: static method of G
Returns: Number - n!

Param Type Description
n Number The number to operate the factorial on.

G.factoradic(n) ⇒ Array

Converts a number to the factorial number system. Digits are in least significant order.

Kind: static method of G
Returns: Array - digits of n in factoradic in least significant order

Param Type Description
n Number Integer in base 10

G.P(n, k) ⇒ Number

Calculates the number of possible permutations of "k" elements in a set of size "n".

Kind: static method of G
Returns: Number - n P k

Param Type Description
n Number Number of elements in the set.
k Number Number of elements to choose from the set.

G.C(n, k) ⇒ Number

Calculates the number of possible combinations of "k" elements in a set of size "n".

Kind: static method of G
Returns: Number - n C k

Param Type Description
n Number Number of elements in the set.
k Number Number of elements to choose from the set.

G.choices(n, k, [options]) ⇒ Number

Higher level method for counting number of possible combinations of "k" elements from a set of size "n".

Kind: static method of G
Returns: Number - Number of possible combinations.

Param Type Description
n Number Number of elements in the set.
k Number Number of elements to choose from the set.
[options] Object
options.replace Boolean Is replacement allowed after each choice?
options.ordered Boolean Does the order of the choices matter?

G.combination(arr, [size]) ⇒ Generator

Generates all combinations of a set.

Kind: static method of G
Returns: Generator - yields each combination as an array

Param Type Default Description
arr Array | String The set of elements.
[size] Number arr.length Number of elements to choose from the set.

G.permutation(arr, [size]) ⇒ Generator

Generates all permutations of a set.

Kind: static method of G
Returns: Generator - yields each permutation as an array

Param Type Default Description
arr Array | String The set of elements.
[size] Number arr.length Number of elements to choose from the set.

G.powerSet(arr) ⇒ Generator

Generates all possible subsets of a set (a.k.a. power set).

Kind: static method of G
Returns: Generator - yields each subset as an array

Param Type Description
arr Array | String The set of elements.

G.permutationCombination(arr) ⇒ Generator

Generates the permutation of the combinations of a set.

Kind: static method of G
Returns: Generator - yields each permutation as an array

Param Type Description
arr Array | String The set of elements.

G.baseN(arr, [size]) ⇒ Generator

Generates all possible "numbers" from the digits of a set.

Kind: static method of G
Returns: Generator - yields all digits as an array

Param Type Default Description
arr Array | String The set of digits.
[size] Number arr.length How many digits will be in the numbers.

G.baseNAll(arr) ⇒ Generator

Infinite generator for all possible "numbers" from a set of digits.

Kind: static method of G
Returns: Generator - yields all digits as an array

Param Type Description
arr Array | String The set of digits

G.cartesian(...sets) ⇒ Generator

Generates the cartesian product of the sets.

Kind: static method of G
Returns: Generator - yields each product as an array

Param Type Description
...sets Array | String variable number of sets of n elements.

G.shuffle(arr) ⇒ Array

Shuffles an array in place using the Fisher–Yates shuffle.

Kind: static method of G
Returns: Array - a random, unbiased perutation of arr

Param Type Description
arr Array A set of elements.

install

npm i generatorics

Downloadsweekly downloads

1,947

version

1.1.0

license

MIT

homepage

github.com

repository

Gitgithub

last publish

collaborators

  • avatar
Report a vulnerability