

skip to:contentpackage searchsign in
❤New Package Monster	Pro
	Teams
	Pricing
	Documentation

npm

Search

Sign UpSign In

 electron-pdf
25.0.0 • Public • Published 7 months ago
	 Readme
	Code Beta
	12 Dependencies
	4 Dependents
	64 Versions

electron-pdf

A command line tool to generate PDF from URL, HTML or Markdown files with electron.

Versioning

Starting with version 4.0.x the master branch will always have the latest electron version.

Semantic Versioning is used, and corresponds to electron versions in the following way:

	electron-pdf 25.0.x (master) => electron=25.4.0, node=16.15.0, chrome=114.0.5735.248
	electron-pdf 20.0.x => electron=20.0.2, node=16.15.0, chrome=104.0.5112.81
	electron-pdf 15.0.x => electron=15.1.1, node=16.5.0, chrome=94.0.4606.61
	electron-pdf 10.0.x => electron=10.1.3, node=12.16.3, chrome=85.0.4183.121
	electron-pdf 7.0.x => electron 7.x (Chromium 78, Node 12.8.1)
	electron-pdf 4.0.x => electron 4.x (Chromium 69, Node 10.11.0)
	electron-pdf 1.3.x => electron 1.6.x (Chromium 56, Node 7.4)
	electron-pdf 1.2.x => electron 1.4.x (Chromium 53, Node 6.5)

Note: The Chromium versions employed by electron have impacts based on the functionality you may be exporting.

Choose the version you need based on Chromium.

Install

npm install electron-pdf

Note: If you're installing electron-pdf as root using the system level npm (vs a user-level install like with NVM) then you may need to run the following command instead:

sudo npm install electron-pdf -g --unsafe-perm

Please see the npm docs for more information.

For gnu/linux installations without a graphical environment:

$ sudo apt-get install xvfb # or equivalent
$ export DISPLAY=':99.0'
$ Xvfb :99 -screen 0 1024x768x24 > /dev/null 2>&1 &
$ electron-pdf ...

There is also an example docker machine here.

Node Usage

Electron PDF can be used inside of an application, or more commonly as the engine for a pdf
rendering service. For instance, to handle http requests using Express. The following snippets
show you how you can get started.

The application must run in an Electron process

In package.json

"start": "DEBUG=electronpdf:* electron index.js",
"watch": "DEBUG=electronpdf:* nodemon --exec electron index.js"

You can use the same instance

var ElectronPDF = require('electron-pdf')
var express = require('express')
var bodyParser = require('body-parser')
var app = express()
app.use(bodyParser.json())

var exporter = new ElectronPDF()
exporter.on('charged', () => {
	//Only start the express server once the exporter is ready
	app.listen(port, hostname, function() {
		console.log(`Export Server running at http://${hostname}:${port}`);
	})
})
exporter.start()

And handle multiple export job instances

app.post('/pdfexport', function(req,res){
	// derive job arguments from request here
	//
	const jobOptions = {
	 /**
	 r.results[] will contain the following based on inMemory
 false: the fully qualified path to a PDF file on disk
 true: The Buffer Object as returned by Electron
	
	 Note: the default is false, this can not be set using the CLI
	 */
	 inMemory: false
	}
	const options = {
 		pageSize : "A4"
	}
	exporter.createJob(source, target, options, jobOptions).then(job => {
	job.on('job-complete', (r) => {
 		console.log('pdf files:', r.results)
 		// Process the PDF file(s) here
 	})
 	job.render()
	})	
})

Using an in memory Buffer

If you set the inMemory setting to true, you must also set closeWindow=false
or you will get a segmentation fault anytime the window is closed before the buffer
is sent on the response. You then need to invoke job.destroy to close the window.

Sample Code:

const jobOptions = { inMemory: true, closeWindow: false }
exporter.createJob(source, target, options, jobOptions).then(job => {
	job.on('job-complete', (r) => {
	 //Send the Buffer here
	 process.nextTick(() => {job.destroy()})
	})
})

Events

The API is designed to emit noteworthy events rather than use callbacks.
Full documentation of all events is a work in progress.

Environment Variables

	
ELECTRONPDF_RENDERER_MAX_MEMORY : The --max-old-space-size option for each Electron renderer process (browser window); default: 75% of total system memory up to 8GB

	
ELECTRONPDF_WINDOW_CLEANUP_INTERVAL : Interval for which to check for hung windows, in milliseconds; default: 30 seconds

	
ELECTRONPDF_WINDOW_LIFE_THRESHOLD : How long a window can remain open before it is terminated, in milliseconds; default: 5 minutes

	
ELECTRONPDF_PNG_CAPTURE_DELAY : Amount of millis to wait before invoking WebContents.capturePage for PNG exports; default: 100ms

Command Line Usage

For Ad-hoc conversions, Electron PDF comes with support for a CLI.

To generate a PDF from a HTML file

$ electron-pdf index.html ~/Desktop/index.pdf

To generate a PDF from a Markdown file

$ electron-pdf index.md ~/Desktop/index.pdf

To generate a PDF from a Markdown file with custom CSS (defaults to Github markdown style)

$ electron-pdf index.html ~/Desktop/index.pdf -c my-awesome-css.css

To generate a PDF from a URL

$ electron-pdf https://fraserxu.me ~/Desktop/fraserxu.pdf

Rendering Options

Electron PDF gives you complete control of how the BrowserWindow should be configured, and when
the window contents should be captured.

To specify browser options

The BrowserWindow supports many options which you
may define by passing a JSON Object to the --browserConfig option.

Some common use cases may include:

	
height and width - electron-pdf calculates the browser height and width based off of the
dimensions of PDF page size multiplied by the HTML standard of 96 pixels/inch. So only set these
values if you need to override this behavior
	
show - to display the browser window during generation

$ electron-pdf https://fraserxu.me ~/Desktop/fraserxu.pdf --browserConfig '{"show":true}'

To generate a PDF after the an async task in the HTML

electron-pdf ./index.html ~/Desktop/README.pdf -e

In your application, at the point which the view is ready for rendering

document.body.dispatchEvent(new Event('view-ready'))

Warning: It is possible that your application will be ready and emit the event before the main electron process has had a chance execute the javascript in the renderer process which listens for this event.

If you are finding that the event is not effective and your page waits until the full timeout has occurred, then you should use setInterval to emit the event until it is acknowledged like so:

 var eventEmitInterval = setInterval(function () {
 document.body.dispatchEvent(new Event('view-ready'))
 }, 25)

 document.body.addEventListener('view-ready-acknowledged', function(){
 clearInterval(eventEmitInterval)
 })

When the main process first receives your ready event it will emit a single acknowlegement on document.body with whatever event name you are using suffixed with -acknowledged. So the default would be view-ready-acknowledged

Observing your own event

If the page you are rending is under your control, and you wish to modify the behavior
of the rendering process you can use a CustomEvent
and an observer that will be triggered after the view is ready but before it is captured.

your-page.html

document.body.dispatchEvent(new CustomEvent('view-ready', { detail: {layout: landscape} }))

your-exporter.js

You are required to provide a function that accepts the detail object from
the CustomEvent and returns a Promise. You may optionally fulfill the promise with
and object that will amend/override any of the contextual attributes assigned to resource (url)
currently being exported.

As an example, suppose you wanted to change the orientation of the PDF,
and capture the output as PNG instead of a PDF.

job.observeReadyEvent((detail) => {
 return new Promise((resolve,reject) => {
 const context = {}
 if(detail && detail.landscape){
 job.changeArgValue('landscape', true)
 context.type = 'png'
 }
 resolve(context)
 })
})

Note: Future versions of the library will only allow you to provide context overrides,
and not allow you to change job level attributes.

All Available Options

Electron PDF exposes the printToPDF settings (i.e. pageSize, orientation, margins, etc.)
available from the Electron API. See the following options for usage.

 A command line tool to generate PDF from URL, HTML or Markdown files

 Options
 --help Show this help
 --version Current version of package

 -i | --input String - The path to the HTML file or url
 -o | --output String - The path of the output PDF

 -b | --printBackground Boolean - Whether to print CSS backgrounds.

 --acceptLanguage String - A valid value for the 'Accept-Language' http request header

 --browserConfig String - A valid JSON String that will be parsed into the options passed to electron.BrowserWindow

 -c | --css String - The path to custom CSS (can be specified more than once)

 -d | --disableCache Boolean - Disable HTTP caching
 false - default

 -e | --waitForJSEvent String - The name of the event to wait before PDF creation
 'view-ready' - default

 -l | --landscape Boolean - true for landscape, false for portrait (don't pass a string on the CLI, just the `-l` flag)
 false - default

 -m | --marginsType Integer - Specify the type of margins to use
 0 - default margins
 1 - no margins (electron-pdf default setting)
 2 - minimum margins

 --noprint Boolean - Do not run printToPDF, useful if the page downloads a file that needs captured instead of a PDF.
 The Electron `win.webContents.session.on('will-download')` event will be implemented
 and the file saved to the location provided in `--output`.
 Currently only supports a single import url.
 The page is responsible for initiating the download itself.

 -p | --pageSize String - Can be A3, A4, A5, Legal, Letter, Tabloid or an Object containing height and width in microns
 "A4" - default

 -r | --requestHeaders String - A valid JSON String that will be parsed into an Object where each key/value pair is: <headerName>: <headerValue>
 Example: '{"Authorization": "Bearer token", "X-Custom-Header": "Hello World"}'

 -s | --printSelectionOnly Boolean - Whether to print selection only
 false - default

 -t | --trustRemoteContent Boolean - Whether to trust remote content loaded in the Electron webview. False by default.
 --type String - The type of export, will dictate the output file type. 'png': PNG image, anything else: PDF File

 -w | --outputWait Integer – Time to wait (in MS) between page load and PDF creation.
 If used in conjunction with -e this will override the default timeout of 10 seconds
 --ignoreCertificateErrors Boolean - If true, all certificate errors thrown by Electron will be ignored. This can be used to accept self-signed and untrusted certificates. You should be aware of the security implications of setting this flag.
 false - default

Find more information on Electron Security here.

Debugging

Sentry

If you have a Sentry account and setup a new app to get a new DSN, you can set a SENTRY_DSN environment variable which will activate sentry logs.
See lib/sentry.js for implementation details.

This will allow you to easily see/monitor errors that are occuring inside of the Chromium renderer (browser window).
It also automatically integrates with Electron's Crash Reporter

CLI Usage

You can see some additional logging (if you're getting errors or unexpected output) by setting DEBUG=electron*
For example: DEBUG=electron* electron-pdf <input> <output> -l

 Usage
 $ electron-pdf <input> <output>
 $ electron-pdf <input> <output> -l

 Examples
 $ electron-pdf http://fraserxu.me ~/Desktop/fraserxu.pdf
 $ electron-pdf ./index.html ~/Desktop/index.pdf
 $ electron-pdf ./README.md ~/Desktop/README.pdf -l
 $ electron-pdf ./README.md ~/Desktop/README.pdf -l -c my-awesome-css.css

Inspired by electron-mocha

Other Formats

Want to use the same options, but export to PNG or snapshot the rendered HTML?
Just set the output filename to end in .png or .html instead!

 Examples
 $ electron-pdf http://fraserxu.me ~/Desktop/fraserxu.pdf
 $ electron-pdf http://fraserxu.me ~/Desktop/fraserxu.html
 $ electron-pdf http://fraserxu.me ~/Desktop/fraserxu.png

Extensions

If you need powerpoint support, pdf-powerpoint
picks up where Electron PDF leaves off by converting each page in the PDF to a PNG and placing
them on individual slides.

License

MIT

Readme
Keywords
	electron
	electron-tool
	pdf
	png
	export
	render
	html
	markdown

Package Sidebar
Install
npm i electron-pdf

Repository

github.com/fraserxu/electron-pdfHomepage
github.com/fraserxu/electron-pdf

Weekly Downloads152

Version
25.0.0

License
MIT

Unpacked Size
90.1 kB

Total Files
28

Last publish
7 months ago

Collaborators
	

	

	

Try on RunKit
Report malware
 Footer

Support
	Help
	Advisories
	Status
	Contact npm

Company
	About
	Blog
	Press

Terms & Policies
	Policies
	Terms of Use
	Code of Conduct
	Privacy

