TypeScript icon, indicating that this package has built-in type declarations

0.2.0 • Public • Published


An port of the popular library comlink by Surma for electron render process. A compatible implementation for the main process is available at comlink-electron-main.

$ npm install --save comlink-electron-main

Differences to comlink

Because of some limitations and differences in api, comlink is not compatible with electron. Electron only supports MessagePorts to be transfererd between main and renderer Process. So because at the moment it is not checked, if the MessagePort is connected with the main Process, only MessagePort is allowed in transferables.


comlink.wrap(Message) and Comlink.expose(value, endpoint?)

Comlink’s goal is to make exposed values from one thread available in the other. expose exposes value on endpoint, where endpoint is a postMessage-like interface.

wrap wraps the other end of the message channel and returns a proxy. The proxy will have all properties and functions of the exposed value, but access and invocations are inherently asynchronous. This means that a function that returns a number will now return a promise for a number. As a rule of thumb: If you are using the proxy, put await in front of it. Exceptions will be caught and re-thrown on the other side.

Comlink.transfer(value, transferables) and Comlink.proxy(value)

By default, every function parameter, return value and object property value is copied, in the sense of structured cloning. Structured cloning can be thought of as deep copying, but has some limitations. See this table for details.

If you want a value to be transferred rather than copied — provided the value is or contains a Transferable — you can wrap the value in a transfer() call and provide a list of transferable values:

const data = new Uint8Array([1, 2, 3, 4, 5]);
await myProxy.someFunction(Comlink.transfer(data, [data.buffer]));

Lastly, you can use Comlink.proxy(value). When using this Comlink will neither copy nor transfer the value, but instead send a proxy. Both threads now work on the same value. This is useful for callbacks, for example, as functions are neither structured cloneable nor transferable.

myProxy.onready = Comlink.proxy((data) => {
  /* ... */

Transfer handlers and event listeners

It is common that you want to use Comlink to add an event listener, where the event source is on another thread:

button.addEventListener("click", myProxy.onClick.bind(myProxy));

While this won’t throw immediately, onClick will never actually be called. This is because Event is neither structured cloneable nor transferable. As a workaround, Comlink offers transfer handlers.

Each function parameter and return value is given to all registered transfer handlers. If one of the event handler signals that it can process the value by returning true from canHandle(), it is now responsible for serializing the value to structured cloneable data and for deserializing the value. A transfer handler has be set up on both sides of the message channel. Here’s an example transfer handler for events:

Comlink.transferHandlers.set("EVENT", {
  canHandle: (obj) => obj instanceof Event,
  serialize: (ev) => {
    return [
        target: {
          classList: [],
  deserialize: (obj) => obj,

Note that this particular transfer handler won’t create an actual Event, but just an object that has the and property. Often, this is enough. If not, the transfer handler can be easily augmented to provide all necessary data.


Every proxy created by Comlink has the [releaseProxy] method. Calling it will detach the proxy and the exposed object from the message channel, allowing both ends to be garbage collected.

const proxy = Comlink.wrap(port);
// ... use the proxy ...


Every proxy created by Comlink has the [createEndpoint] method. Calling it will return a new MessagePort, that has been hooked up to the same object as the proxy that [createEndpoint] has been called on.

const port = myProxy[Comlink.createEndpoint]();
const newProxy = Comlink.wrap(port);

Comlink.windowEndpoint(window, context = self, targetOrigin = "*")

Windows and Web Workers have a slightly different variants of postMessage. If you want to use Comlink to communicate with an iframe or another window, you need to wrap it with windowEndpoint().

window is the window that should be communicate with. context is the EventTarget on which messages from the window can be received (often self). targetOrigin is passed through to postMessage and allows to filter messages by origin. For details, see the documentation for Window.postMessage.

For a usage example, take a look at the non-worker examples in the docs folder.


Comlink does provide TypeScript types. When you expose() something of type T, the corresponding wrap() call will return something of type Comlink.Remote<T>. While this type has been battle-tested over some time now, it is implemented on a best-effort basis. There are some nuances that are incredibly hard if not impossible to encode correctly in TypeScript’s type system. It may sometimes be necessary to force a certain type using as unknown as <type>.


Comlink works with Node’s worker_threads module. Take a look at the example in the docs folder.

Additional Resources

License Apache-2.0

Package Sidebar


npm i comlink-electron-renderer

Weekly Downloads






Unpacked Size

57.5 kB

Total Files


Last publish


  • iiimaddiniii