@stdlib/ndarray-base-slice-assign
TypeScript icon, indicating that this package has built-in type declarations

0.2.1 • Public • Published
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

sliceAssign

NPM version Build Status Coverage Status

Assign element values from a broadcasted input ndarray to corresponding elements in an output ndarray view.

Installation

npm install @stdlib/ndarray-base-slice-assign

Usage

var sliceAssign = require( '@stdlib/ndarray-base-slice-assign' );

sliceAssign( x, y, slice, strict )

Assigns element values from a broadcasted input ndarray to corresponding elements in an output ndarray view.

var Slice = require( '@stdlib/slice-ctor' );
var MultiSlice = require( '@stdlib/slice-multi' );
var ndarray = require( '@stdlib/ndarray-ctor' );
var ndzeros = require( '@stdlib/ndarray-zeros' );
var ndarray2array = require( '@stdlib/ndarray-to-array' );

// Define an input array:
var buffer = [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 ];
var shape = [ 3, 2 ];
var strides = [ 2, 1 ];
var offset = 0;

var x = ndarray( 'generic', buffer, shape, strides, offset, 'row-major' );
// returns <ndarray>

var sh = x.shape;
// returns [ 3, 2 ]

var arr = ndarray2array( x );
// returns [ [ 1.0, 2.0 ], [ 3.0, 4.0 ], [ 5.0, 6.0 ] ]

// Define an output array:
var y = ndzeros( [ 2, 3, 2 ], {
    'dtype': x.dtype
});

// Create a slice:
var s0 = null;
var s1 = new Slice( null, null, -1 );
var s2 = new Slice( null, null, -1 );
var s = new MultiSlice( s0, s1, s2 );
// returns <MultiSlice>

// Perform assignment:
var out = sliceAssign( x, y, s, false );
// returns <ndarray>

var bool = ( out === y );
// returns true

arr = ndarray2array( y );
// returns [ [ [ 6.0, 5.0 ], [ 4.0, 3.0 ], [ 2.0, 1.0 ] ], [ [ 6.0, 5.0 ], [ 4.0, 3.0 ], [ 2.0, 1.0 ] ] ]

The function accepts the following arguments:

  • x: input ndarray.
  • y: output ndarray.
  • slice: a MultiSlice instance specifying the output ndarray view.
  • strict: boolean indicating whether to enforce strict bounds checking.

Notes

  • The input ndarray must be broadcast compatible with the output ndarray view.
  • The input ndarray must have a data type which can be safely cast to the output ndarray data type. Floating-point data types (both real and complex) are allowed to downcast to a lower precision data type of the same kind (e.g., element values from a 'float64' input ndarray can be assigned to corresponding elements in a 'float32' output ndarray).

Examples

var E = require( '@stdlib/slice-multi' );
var scalar2ndarray = require( '@stdlib/ndarray-from-scalar' );
var ndarray2array = require( '@stdlib/ndarray-to-array' );
var ndzeros = require( '@stdlib/ndarray-zeros' );
var slice = require( '@stdlib/ndarray-base-slice' );
var sliceAssign = require( '@stdlib/ndarray-base-slice-assign' );

// Alias `null` to allow for more compact indexing expressions:
var _ = null;

// Create an output ndarray:
var y = ndzeros( [ 3, 3, 3 ] );

// Update each matrix...
var s1 = E( 0, _, _ );
sliceAssign( scalar2ndarray( 100 ), y, s1, false );

var a1 = ndarray2array( slice( y, s1, false ) );
// returns [ [ 100, 100, 100 ], [ 100, 100, 100 ], [ 100, 100, 100 ] ]

var s2 = E( 1, _, _ );
sliceAssign( scalar2ndarray( 200 ), y, s2, false );

var a2 = ndarray2array( slice( y, s2, false ) );
// returns [ [ 200, 200, 200 ], [ 200, 200, 200 ], [ 200, 200, 200 ] ]

var s3 = E( 2, _, _ );
sliceAssign( scalar2ndarray( 300 ), y, s3, false );

var a3 = ndarray2array( slice( y, s3, false ) );
// returns [ [ 300, 300, 300 ], [ 300, 300, 300 ], [ 300, 300, 300 ] ]

// Update the second rows in each matrix:
var s4 = E( _, 1, _ );
sliceAssign( scalar2ndarray( 400 ), y, s4, false );

var a4 = ndarray2array( slice( y, s4, false ) );
// returns [ [ 400, 400, 400 ], [ 400, 400, 400 ], [ 400, 400, 400 ] ]

// Update the second columns in each matrix:
var s5 = E( _, _, 1 );
sliceAssign( scalar2ndarray( 500 ), y, s5, false );

var a5 = ndarray2array( slice( y, s5, false ) );
// returns [ [ 500, 500, 500 ], [ 500, 500, 500 ], [ 500, 500, 500 ] ]

// Return the contents of the entire ndarray:
var a6 = ndarray2array( y );
/* returns
  [
    [
      [ 100, 500, 100 ],
      [ 400, 500, 400 ],
      [ 100, 500, 100 ]
    ],
    [
      [ 200, 500, 200 ],
      [ 400, 500, 400 ],
      [ 200, 500, 200 ]
    ],
    [
      [ 300, 500, 300 ],
      [ 400, 500, 400 ],
      [ 300, 500, 300 ]
    ]
  ]
*/

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.

Package Sidebar

Install

npm i @stdlib/ndarray-base-slice-assign

Homepage

stdlib.io

Weekly Downloads

107

Version

0.2.1

License

Apache-2.0

Unpacked Size

65.8 kB

Total Files

11

Last publish

Collaborators

  • stdlib-bot
  • kgryte
  • planeshifter
  • rreusser