safekids.ai
Machine Learning Models to Detect Hate Speech and Adult/Weapon Images and User Intent
These are local models (12MB/5MB) that detect hate speech and more and vision models that detect adult images and images of weapons.
The models can be run on node or on the browser. SDK's are available for Python, JAVA, Node and in-the-browser that can be leverage by a chrome extension.
Install
npm install
Build/Test
npx nx run-many -t test,build
Release Management
npm run release
Publish
npx nx run-many --target=publish --projects=nlp-js-common,nlp-js-node,nlp-js-react-native,vision-js-common,vision-js-node,vision-js-web,ml-demo --parallel=false
a) make sure you have the following in your ~/.npmrc //registry.npmjs.org/:_authToken=${NPM_TOKEN} b) define an environment variable NPM_TOKEN with the value of the token
NLP and Vision Classification
NLP Classification | Vision Classification |
---|---|
bullying_hate | porn |
porn | weapons |
proxy | clean ß |
self_harm | |
weapons | |
clean |
Model Accuracy
Label | Training Data Count | Test Data Count | f1 score | precision | recall |
---|---|---|---|---|---|
bullying_hate | 96,523 | 7,500 | 0.97 | 0.991 | 0.949 |
clean | 1,351,563 | 20,000 | 0.98 | 0.99 | 0.9702 |
porn | 300,082 | 6,500 | 0.97 | 0.993 | 0.948 |
proxy | 8,038 | 200 | 0.94 | 0.988 | 0.896 |
self_harm | 180,826 | 5,000 | 0.96 | 0.984 | 0.937 |
weapons | 74,802 | 4,000 | 0.96 | 0.989 | 0.932 |
Precision Glossary of Terms
number of true positives / total positive predictions. - indicates the confidence of a model. i.e: if precision for class X is 0.99, 99% chance that if model predicts class X for an input, 99% chance that correct label is also X Recall
number of true positives/ total positive labels in test set. --- indicates how many of the total inputs belonging to a class in test set are correctly caught by the model F1 score
harmonic mean of Precision and Recall. - the general accuracy measure for classification that balances out precision and recall
API Reference
Run the text classification model in node
//initialize the model
import {NLPNode} from '@safekids-ai/nlp-js-node'
nlp = new NLPNode("nlp.onnx");
await nlp.init();
//run the hate classifier
expect(await nlp.findHate("I love samosa. Mike is an asshole. Safekids is awesome!"))
.toEqual({flag: true, label: 'hate_bullying', flaggedText: 'Mike is an asshole.'});
//text classification
expect(await nlp.classifyText("Darrell Brooks' mother wants to 'curl up and die' after verdict | FOX6 News Milwaukee"))
.toEqual("clean");
expect(await nlp.classifyText("I want to kill myself | Samaritans"))
.toEqual("self_harm");
expect(await nlp.classifyText("Milf Porn Videos: Mature Mom Sex Videos - RedTube.com"))
.toEqual("porn");
Run the image classification model in node
import {VisionNode} from '@safekids-ai/vision-js-node'
vision = new VisionNode("vision.onnx");
await vision.init();
const buffer: ImageData = getSync(qa_path + "gun1.jpg");
const pred = await vision.classifyImageData(buffer);
expect(pred).toEqual("weapons");
Run the text classification directly in the browser!
import {NLPWeb} from '@safekids-ai/nlp-js-react-native'
//initialize the model
nlp = new NLPWeb("nlp.onnx");
await nlp.init();
Run the image classification model directly in the browser or used in chrome extension
import {VisionWeb} from '@safekids-ai/vision-js-web'
vision = new VisionWeb("vision.onnx");
await vision.init();
Run the text and image classification model in Python
from safekids import SafeText
safe_text_classifier = SafeText()
safe_text_classifier.classify("text to classify")
from safekids import SafeImage
safe_image_classifier = SafeImage
safe_image_classifier.classify("path_to_image")
License
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en