

skip to:contentpackage searchsign in
❤Nocturnally Psychologizing Millipede	Pro
	Teams
	Pricing
	Documentation

npm

Search

Sign UpSign In

 @pdf-lib/fontkit

1.1.1 • Public • Published 3 years ago
	 Readme
	Code Beta
	1 Dependency
	85 Dependents
	9 Versions

Purpose of this Fork

This project is a fork of https://github.com/foliojs/fontkit created for use in https://github.com/Hopding/pdf-lib.

Listed below are changes that have been made in this fork:

	Store binary data as compressed base64 JSON so the fs module isn't needed to read it back:
	968e35c
	99a35c7
	2f1445d
	
f674bf2-R24, f674bf2-R13

	Rewrote Makefile to Makefile.js using shelljs:
	a246e7f

	Update to Babel 7:
	70049f8
	8d5b29b

	Build UMD modules:
	cce995c
	08cacef

	Build ES modules:
	dbe8e9d
	9363d1f

	Bundle Node dependencies (stream, util, Buffer) into UMD and ES modules so consumers of this lib don't have to deal with them:
	9363d1f

	Accept Uint8Array objects for font data instead of Buffer objects, so consumers can stick to plain JS regardless of their environment:
	9363d1f-R12

	Add TypeScript declaration file:
	387ebc4
	3bafdbc
	b0241e7

	Remove calls to new Function() to allow usage on CSP sites:
	e3dcc8a

	Released to NPM as @pdf-lib/fontkit
	873b05d

Also see

	https://github.com/Hopding/unicode-properties
	https://github.com/Hopding/brotli.js
	https://github.com/Hopding/restructure
	https://github.com/Hopding/png-ts

fontkit

Fontkit is an advanced font engine for Node and the browser, used by PDFKit and pdf-lib. It supports many font formats, advanced glyph substitution and layout features, glyph path extraction, color emoji glyphs, font subsetting, and more.

Features

	Suports TrueType (.ttf), OpenType (.otf), WOFF, WOFF2, TrueType Collection (.ttc), and Datafork TrueType (.dfont) font files
	Supports mapping characters to glyphs, including support for ligatures and other advanced substitutions (see below)
	Supports reading glyph metrics and laying out glyphs, including support for kerning and other advanced layout features (see below)
	Advanced OpenType features including glyph substitution (GSUB) and positioning (GPOS)
	Apple Advanced Typography (AAT) glyph substitution features (morx table)
	Support for getting glyph vector paths and converting them to SVG paths, or rendering them to a graphics context
	Supports TrueType (glyf) and PostScript (CFF) outlines
	Support for color glyphs (e.g. emoji), including Apple’s SBIX table, and Microsoft’s COLR table
	Support for AAT variation glyphs, allowing for nearly infinite design control over weight, width, and other axes.
	Font subsetting support - create a new font including only the specified glyphs

Example

import fontkit from '@pdf-lib/fontkit';
import fs from 'fs';

// open a font synchronously
const fontData = fs.readFileSync('font.ttf');
const font = fontkit.create(fontData);

// layout a string, using default shaping features.
// returns a GlyphRun, describing glyphs and positions.
const run = font.layout('hello world!');

// get an SVG path for a glyph
const svg = run.glyphs[0].path.toSVG();

// create a font subset
const subset = font.createSubset();
run.glyphs.forEach(function(glyph) {
 subset.includeGlyph(glyph);
});

subset.encodeStream()
 .pipe(fs.createWriteStream('subset.ttf'));

Installation

NPM Module

To install the latest stable version:

With npm
npm install --save @pdf-lib/fontkit

With yarn
yarn add @pdf-lib/fontkit

This assumes you're using npm or yarn as your package manager.

UMD Module

You can also download @pdf-lib/fontkit as a UMD module from unpkg. The UMD builds have been compiled to ES5, so they should work in any modern browser. UMD builds are useful if you aren't using a package manager or module bundler. For example, you can use them directly in the <script> tag of an HTML page.

The following builds are available:

	https://unpkg.com/@pdf-lib/fontkit/dist/fontkit.umd.js
	https://unpkg.com/@pdf-lib/fontkit/dist/fontkit.umd.min.js

When using a UMD build, you will have access to a global window.fontkit variable. This variable contains the object exported by @pdf-lib/fontkit. For example:

// NPM module
import fontkit from '@pdf-lib/fontkit';

// UMD module
var fontkit = window.fontkit;

API

fontkit.create(buffer, postscriptName = null)

Returns a font object for the given buffer. For collection fonts (such as TrueType collection files), you can pass a postscriptName to get that font out of the collection instead of a collection object.

Font objects

There are several different types of font objects that are returned by fontkit depending on the font format. They all inherit from the TTFFont class and have the same public API, described below.

Metadata properties

The following properties are strings (or null if the font does not contain strings for them) describing the font, as specified by the font creator.

	postscriptName
	fullName
	familyName
	subfamilyName
	copyright
	version

Metrics

The following properties describe the general metrics of the font. See here for a good overview of how all of these properties relate to one another.

	
unitsPerEm - the size of the font’s internal coordinate grid
	
ascent - the font’s ascender

	
descent - the font’s descender

	
lineGap - the amount of space that should be included between lines
	
underlinePosition - the offset from the normal underline position that should be used
	
underlineThickness - the weight of the underline that should be used
	
italicAngle - if this is an italic font, the angle the cursor should be drawn at to match the font design
	
capHeight - the height of capital letters above the baseline. See here for more details.
	
xHeight- the height of lower case letters. See here for more details.
	
bbox - the font’s bounding box, i.e. the box that encloses all glyphs in the font

Other properties

	
numGlyphs - the number of glyphs in the font
	
characterSet - an array of all of the unicode code points supported by the font
	
availableFeatures - an array of all OpenType feature tags (or mapped AAT tags) supported by the font (see below for a description of this)

Character to glyph mapping

Fontkit includes several methods for character to glyph mapping, including support for advanced OpenType and AAT substitutions.

font.glyphForCodePoint(codePoint)

Maps a single unicode code point (number) to a Glyph object. Does not perform any advanced substitutions (there is no context to do so).

font.hasGlyphForCodePoint(codePoint)

Returns whether there is glyph in the font for the given unicode code point.

font.glyphsForString(string)

This method returns an array of Glyph objects for the given string. This is only a one-to-one mapping from characters
to glyphs. For most uses, you should use font.layout (described below), which provides a much more advanced mapping
supporting AAT and OpenType shaping.

Glyph metrics and layout

Fontkit includes several methods for accessing glyph metrics and performing layout, including support for kerning and other advanced OpenType positioning adjustments.

font.widthOfGlyph(glyph_id)

Returns the advance width (described above) for a single glyph id.

font.layout(string, features = [])

This method returns a GlyphRun object, which includes an array of Glyphs and GlyphPositions for the given string.
Glyph objects are described below. GlyphPosition objects include 4 properties: xAdvance, yAdvance, xOffset,
and yOffset.

The features parameter is an array of OpenType feature tags to be applied
in addition to the default set. If this is an AAT font, the OpenType feature tags are mapped to AAT features.

Variation fonts

Fontkit has support for AAT variation fonts, where glyphs can adjust their shape according to user defined settings along
various axes including weight, width, and slant. Font designers specify the minimum, default, and maximum values for each
axis they support, and allow the user fine grained control over the rendered text.

font.variationAxes

Returns an object describing the available variation axes. Keys are 4 letter axis tags, and values include name,
min, default, and max properties for the axis.

font.namedVariations

The font designer may have picked out some variations that they think look particularly good, for example a light, regular,
and bold weight which would traditionally be separate fonts. This property returns an object describing these named variation
instances that the designer has specified. Keys are variation names, and values are objects with axis settings.

font.getVariation(variation)

Returns a new font object representing this variation, from which you can get glyphs and perform layout as normal.
The variation parameter can either be a variation settings object or a string variation name. Variation settings objects
have axis names as keys, and numbers as values (should be in the range specified by font.variationAxes).

Other methods

font.getGlyph(glyph_id, codePoints = [])

Returns a glyph object for the given glyph id. You can pass the array of code points this glyph represents for your use later, and it will be stored in the glyph object.

font.createSubset()

Returns a Subset object for this font, described below.

Font Collection objects

For font collection files that contain multiple fonts in a single file, such as TrueType Collection (.ttc) and Datafork TrueType (.dfont) files, a font collection object can be returned by Fontkit.

collection.getFont(postscriptName)

Gets a font from the collection by its postscript name. Returns a Font object, described above.

collection.fonts

This property is a lazily-loaded array of all of the fonts in the collection.

Glyph objects

Glyph objects represent a glyph in the font. They have various properties for accessing metrics and the actual vector path the glyph represents, and methods for rendering the glyph to a graphics context.

You do not create glyph objects directly. They are created by various methods on the font object, described above. There are several subclasses of the base Glyph class internally that may be returned depending on the font format, but they all include the following API.

Properties

	
id - the glyph id in the font
	
codePoints - an array of unicode code points that are represented by this glyph. There can be multiple code points in the case of ligatures and other glyphs that represent multiple visual characters.
	
path - a vector Path object representing the glyph
	
bbox - the glyph’s bounding box, i.e. the rectangle that encloses the glyph outline as tightly as possible.
	
cbox - the glyph’s control box. This is often the same as the bounding box, but is faster to compute. Because of the way bezier curves are defined, some of the control points can be outside of the bounding box. Where bbox takes this into account, cbox does not. Thus, cbox is less accurate, but faster to compute. See here for a more detailed description.
	
advanceWidth - the glyph’s advance width.

glyph.render(ctx, size)

Renders the glyph to the given graphics context, at the specified font size.

Color glyphs (e.g. emoji)

Fontkit has support for several different color emoji font formats. Currently, these include Apple’s SBIX table (as used by the “Apple Color Emoji” font), and Microsoft’s COLR table (supported by Windows 8.1). Here is an overview of the various color font formats out there.

glyph.getImageForSize(size)

For SBIX glyphs, which are bitmap based, this returns an object containing some properties about the image, along with the image data itself (usually PNG).

glyph.layers

For COLR glyphs, which are vector based, this returns an array of objects representing the glyphs and colors for each layer in render order.

Path objects

Path objects are returned by glyphs and represent the actual vector outlines for each glyph in the font. Paths can be converted to SVG path data strings, or to functions that can be applied to render the path to a graphics context.

path.moveTo(x, y)

Moves the virtual pen to the given x, y coordinates.

path.lineTo(x, y)

Adds a line to the path from the current point to the given x, y coordinates.

path.quadraticCurveTo(cpx, cpy, x, y)

Adds a quadratic curve to the path from the current point to the given x, y coordinates using cpx, cpy as a control point.

path.bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y)

Adds a bezier curve to the path from the current point to the given x, y coordinates using cp1x, cp1y and cp2x, cp2y as control points.

path.closePath()

Closes the current sub-path by drawing a straight line back to the starting point.

path.toFunction()

Compiles the path to a JavaScript function that can be applied with a graphics context in order to render the path.

path.toSVG()

Converts the path to an SVG path data string.

path.bbox

This property represents the path’s bounding box, i.e. the smallest rectangle that contains the entire path shape. This is the exact bounding box, taking into account control points that may be outside the visible shape.

path.cbox

This property represents the path’s control box. It is like the bounding box, but it includes all points of the path, including control points of bezier segments. It is much faster to compute than the real bounding box, but less accurate if there are control points outside of the visible shape.

Subsets

Fontkit can perform font subsetting, i.e. the process of creating a new font from an existing font where only the specified glyphs are included. This is useful to reduce the size of large fonts, such as in PDF generation or for web use.

Currently, subsets produce minimal fonts designed for PDF embedding that may not work as standalone files. They have no cmap tables and other essential tables for standalone use. This limitation will be removed in the future.

You create a Subset object by calling font.createSubset(), described above. The API on Subset objects is as follows.

subset.includeGlyph(glyph)

Includes the given glyph object or glyph ID in the subset.

subset.encodeStream()

Returns a stream containing the encoded font file that can be piped to a destination, such as a file.

License

MIT

Readme
Keywords
	opentype
	font
	typography
	subset
	emoji
	glyph
	layout

Package Sidebar
Install
npm i @pdf-lib/fontkit

Repository

github.com/Hopding/fontkitHomepage
github.com/Hopding/fontkit

Weekly Downloads105,475

Version
1.1.1

License
MIT

Unpacked Size
4.3 MB

Total Files
25

Last publish
3 years ago

Collaborators
	

Try on RunKit
Report malware
 Footer

Support
	Help
	Advisories
	Status
	Contact npm

Company
	About
	Blog
	Press

Terms & Policies
	Policies
	Terms of Use
	Code of Conduct
	Privacy

