@stdlib/math-base-special-ellipj
TypeScript icon, indicating that this package has built-in type declarations

0.3.1 • Public • Published
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

ellipj

NPM version Build Status Coverage Status

Compute the Jacobi elliptic functions sn, cn, and dn.

The Jacobi elliptic functions may be defined as the inverse of the incomplete elliptic integral of the first kind. Accordingly, they compute the value φ which satisfies the equation

where the parameter m is related to the modulus k by m = k^2.

Installation

npm install @stdlib/math-base-special-ellipj

Usage

var ellipj = require( '@stdlib/math-base-special-ellipj' );

ellipj( u, m )

Computes the Jacobi elliptic functions functions sn, cn, and dn, and the Jacobi amplitude am.

var v = ellipj( 0.3, 0.5 );
// returns [ ~0.293, ~0.956, ~0.978, ~0.298 ]

v = ellipj( 0.0, 0.0 );
// returns [ ~0.0, ~1.0, ~1.0, ~0.0 ]

v = ellipj( Infinity, 1.0 );
// returns [ ~1.0, ~0.0, ~0.0, ~1.571 ]

v = ellipj( 0.0, -2.0 );
// returns [ ~0.0, ~1.0, ~1.0, NaN ]

v = ellipj( NaN, NaN );
// returns [ NaN, NaN, NaN, NaN ]

ellipj.assign( u, m, out, stride, offset )

Computes the Jacobi elliptic functions sn, cn, dn, and Jacobi amplitude am and assigns results to a provided output array.

var Float64Array = require( '@stdlib/array-float64' );

var out = new Float64Array( 4 );

var v = ellipj.assign( 0.0, 0.0, out, 1, 0 );
// returns <Float64Array>[ ~0.0, ~1.0, ~1.0, ~0.0 ]

var bool = ( v === out );
// returns true

ellipj.sn( u, m )

Computes the Jacobi elliptic function sn of value u with modulus m.

var v = ellipj.sn( 0.3, 0.5 );
// returns ~0.293

ellipj.cn( u, m )

Computes the Jacobi elliptic function cn of value u with modulus m.

var v = ellipj.cn( 0.3, 0.5 );
// returns ~0.956

ellipj.dn( u, m )

Computes the Jacobi elliptic function dn of value u with modulus m.

var v = ellipj.dn( 0.3, 0.5 );
// returns ~0.978

ellipj.am( u, m )

Computes the Jacobi amplitude am of value u with modulus m.

var v = ellipj.am( 0.3, 0.5 );
// returns ~0.298

v = ellipj.am( 0.3, 2.0 );
// returns NaN

Although sn, cn, and dn may be computed for -∞ < m < ∞, the domain of am is 0 ≤ m ≤ 1. For m < 0 or m > 1, the function returns NaN.

Notes

  • Functions sn, cn, and dn are valid for -∞ < m < ∞. Values for m < 0 or m > 1 are computed in terms of Jacobi elliptic functions with 0 < m < 1 via the transformations outlined in Equations 16.13 and 16.15 from The Handbook of Mathematical Functions (Abramowitz and Stegun).
  • If more than one of sn, cn, dn, or am is to be computed, preferring using ellipj to compute all four values simultaneously.

Examples

var linspace = require( '@stdlib/array-base-linspace' );
var ellipk = require( '@stdlib/math-base-special-ellipk' );
var ellipj = require( '@stdlib/math-base-special-ellipj' );

var m = 0.7;
var u = linspace( 0.0, ellipk( m ), 100 );

var out;
var i;
for ( i = 0; i < 100; i++ ) {
    out = ellipj( u[ i ], m );
    console.log( 'sn(%d, %d) = %d', u[ i ], m, out[ 0 ] );
    console.log( 'cn(%d, %d) = %d', u[ i ], m, out[ 1 ] );
    console.log( 'dn(%d, %d) = %d', u[ i ], m, out[ 2 ] );
    console.log( 'am(%d, %d) = %d', u[ i ], m, out[ 3 ] );
}

References

  • Fukushima, Toshio. 2009. "Fast computation of complete elliptic integrals and Jacobian elliptic functions." Celestial Mechanics and Dynamical Astronomy 105 (4): 305. doi:10.1007/s10569-009-9228-z.
  • Fukushima, Toshio. 2015. "Precise and fast computation of complete elliptic integrals by piecewise minimax rational function approximation." Journal of Computational and Applied Mathematics 282 (July): 71–76. doi:10.1016/j.cam.2014.12.038.

See Also


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.

Readme

Keywords

none

Package Sidebar

Install

npm i @stdlib/math-base-special-ellipj

Homepage

stdlib.io

Weekly Downloads

4

Version

0.3.1

License

Apache-2.0

Unpacked Size

66.7 kB

Total Files

16

Last publish

Collaborators

  • stdlib-bot
  • kgryte
  • planeshifter
  • rreusser