Search results
497 packages found
A pure JavaScript implementation of a BPE tokenizer (Encoder/Decoder) for GPT-2 / GPT-3 / GPT-4 and other OpenAI models
- BPE
- encoder
- decoder
- tokenizer
- GPT
- GPT-2
- GPT-3
- GPT-3.5
- GPT-4
- NLP
- Natural Language Processing
- Text Generation
- OpenAI
- Machine Learning
i18n for ISO 3166-1 country codes
Detect NSFW content client-side
Typescript bindings for langchain
JavaScript/TypeScript library for multivariate polynomial regression.
Node.js client for the unofficial ChatGPT API.
Detect NSFW content client-side
Machine learner sentiment classifier, with ability to negate words, with english and german

Get structured, fully typed JSON outputs from OpenAI's new 0613 models via functions
A pure JavaScript implementation of a BPE tokenizer (Encoder/Decoder) for GPT-2 / GPT-3 / GPT-4 / Claude Instant / Claude 2
- BPE
- encoder
- decoder
- tokenizer
- GPT
- GPT-2
- GPT-3
- GPT-3.5
- GPT-4
- NLP
- Natural Language Processing
- Text Generation
- OpenAI
- Machine Learning
large model translator
- Xenova
- nllb-200-distilled-600M
- translator
- transformers
- transformers.js
- huggingface
- hugging face
- machine learning
- deep learning
- artificial intelligence
- AI
- ML
The Typescript-first prompt engineering toolkit for working with chat based LLMs.
Labeled wireless sensor network data set collected from a multi-hop wireless sensor network deployment using TelosB motes.
- stdlib
- datasets
- dataset
- data
- sample
- sensor
- network
- machine learning
- ml
- labeled
- mote
- motes
- outliers
- outlier
- View more
Labeled wireless sensor network data set collected from a simple single-hop wireless sensor network deployment using TelosB motes.
- stdlib
- datasets
- dataset
- data
- sample
- sensor
- network
- machine learning
- ml
- labeled
- mote
- motes
- outliers
- outlier
- View more
Detect NSFW content client-side
Typescript bindings for langchain
Contains some util methods for converting numbers into words, ordinal words and ordinal numbers. English and Malayalam
Build great text-to-action experiences with LLMs