x2node-dbos

1.9.1 • Public • Published

X2 Framework for Node.js | Database Operations

The Database Operations or DBOs module, being a part of X2 Framework for Node.js, allows applications to perform complex operations against SQL databases without dealing with SQL queries, parsing result set rows into hierarchical JSON objects and dealing with database and database driver specifics. It allows applications to focus on the high level data structures and business logic instead. Some of the most notable features of the module include:

  • Centering on the concept of records, which are well defined JSON documents that support complex data structures including nested objects, arrays and maps (nested objects with arbitrary sets of properties). This allows applications to work with the persistent data as easily as it could be with a document-based database while having a full-featured SQL database in the back-end.

  • Mapping of Record Types defined using the means of the x2node-records module to the database tables.

  • Automatic construction of SQL queries and statements to support the four basic database operations for records and record collections: search/read, create, update and delete.

  • Automatic generation of multiple SQL statements to perform complex database operations when necessary, while still reaching for the best efficiency.

  • Support for quering records with multiple nested collection properties.

  • Support for fetching referred records of other record types all in a single database operation.

  • Support for calculated properties and aggregates.

  • Support for result set ranges expressed in records, not rows.

  • Automatic support for record meta-data such as record versions (which may be useful to support ETags and data modification conflicts detection).

  • Respect for the RDBMS features such as data integrity constraints and transactional data locking.

It's worth noting that the DBOs module is not an ORM and it does not attempt to recreate the concepts pioneered by such Java world frameworks as Hibernate. It is not built around the idea of automatic synchronization of state between the application-side objects and the database. It is built around the principles of clarity, efficiency and practicality.

Out of the box, the module supports MySQL (MariaDB, Amazon Aurora) and PostgreSQL databases. Support for more database engines will be included in the future releases. Custom database driver implementations can be plugged in as well.

See module's API Reference Documentation.

Table of Contents

Usage

For the purpose of the DBOs module usage demonstration let's say we have the following self-explanatory schema in a MySQL database:

CREATE TABLE accounts (
    id INTEGER UNSIGNED AUTO_INCREMENT PRIMARY KEY,
    fname VARCHAR(30) NOT NULL,
    lname VARCHAR(30) NOT NULL
);
 
CREATE TABLE products (
    id INTEGER UNSIGNED AUTO_INCREMENT PRIMARY KEY,
    name VARCHAR(30) NOT NULL UNIQUE,
    price DECIMAL(5,2) NOT NULL
);
 
CREATE TABLE orders (
    id INTEGER UNSIGNED AUTO_INCREMENT PRIMARY KEY,
    account_id INTEGER UNSIGNED NOT NULL,
    placed_on TIMESTAMP(3) DEFAULT 0,
    status VARCHAR(10) NOT NULL,
    FOREIGN KEY (account_id) REFERENCES accounts (id)
);
 
CREATE TABLE order_items (
    id INTEGER UNSIGNED AUTO_INCREMENT PRIMARY KEY,
    order_id INTEGER UNSIGNED NOT NULL,
    product_id INTEGER UNSIGNED NOT NULL,
    quantity TINYINT UNSIGNED NOT NULL,
    FOREIGN KEY (order_id) REFERENCES orders (id),
    FOREIGN KEY (product_id) REFERENCES products (id),
    UNIQUE (order_id, product_id)
);

From the point of view of the application, this schema provides storage for three types of records: accounts, products and orders (with order line items). The DBOs will work with these three types of records and will allow searching them, getting their data, creating, updating and deleting them.

Record Types

The first step is to define the record types library using X2 Framework's x2node-records module and map the records and their properties to the database tables and columns:

// load the framework modules
const records = require('x2node-records');
const dbos = require('x2node-dbos');
 
// construct our sample record types library with DBOs extensions
const recordTypes = records.with(dbos).buildLibrary({
    recordTypes: {
        'Account': {
            table: 'accounts',
            properties: {
                'id': {
                    valueType: 'number',
                    role: 'id'
                },
                'firstName': {
                    valueType: 'string',
                    column: 'fname'
                },
                'lastName': {
                    valueType: 'string',
                    column: 'lname'
                },
                'orderRefs': {
                    valueType: 'ref(Order)[]',
                    reverseRefProperty: 'accountRef'
                }
            }
        },
        'Product': {
            table: 'products',
            properties: {
                'id': {
                    valueType: 'number',
                    role: 'id'
                },
                'name': {
                    valueType: 'string'
                },
                'price': {
                    valueType: 'number'
                }
            }
        },
        'Order': {
            table: 'orders',
            properties: {
                'id': {
                    valueType: 'number',
                    role: 'id'
                },
                'accountRef': {
                    valueType: 'ref(Account)',
                    column: 'account_id',
                    modifiable: false
                },
                'placedOn': {
                    valueType: 'datetime',
                    column: 'placed_on',
                    modifiable: false
                },
                'status': {
                    valueType: 'string'
                },
                'items': {
                    valueType: 'object[]',
                    table: 'order_items',
                    parentIdColumn: 'order_id',
                    properties: {
                        'id': {
                            valueType: 'number',
                            role: 'id'
                        },
                        'productRef': {
                            valueType: 'ref(Product)',
                            column: 'product_id',
                            modifiable: false
                        },
                        'quantity': {
                            valueType: 'number'
                        }
                    }
                }
            }
        }
    }
});

Note how the DBOs module is added to the library as an extention to allow all the additional record type and property definition attributes used to map the database schema.

The DBO Factory

The next step is to constructo the DBO Factory, which is used to create the various DBOs:

// create DBO factory against the record types library and the DB driver
const dboFactory = dbos.createDBOFactory(recordTypes, 'mysql');

The DBO factory is provided with the record types library and the database driver, so that it knows how to construct database engine-specific SQL. Out-of-the-box the module supports mysql (and other compatible implementations) and pg. Custom driver implementations can be provided to the DBO factory as well.

The createDBOFactory() function can also take a third argument, options, which is an object passed directly to the database driver implementation.

The built-in PostgreSQL driver does not take any options.

The built-in MySQL driver, however, can take the following options:

  • orderMode - There is a difference how some versions of MariaDB (pre version 10.1.35) and MySQL apply sorting to the results of SQL queries. MySQL and newer versions of MariaDB may apply sorting after the result set rows are generated, including any variable calculations. That means that if the row includes a row counter that is incremented for each row, the counter will be calculated before the sorting is applied. This is as opposed to older versions of MariaDB that always apply sorting before row variables are calculated. Because of these differences, the driver may decide to construct the SQL queries differently. By default, the query without a counter but with the ORDER BY clause is created and is used as a subquery for the outer query that includes the row counter. This corresponds to MySQL and newer versions of MariaDB. If orderMode option is "pre", no subquery is used and both the row counter and the ORDER BY clause are included in a single one-level query. If orderMode is "preIfMariaDB", the driver detects if it runs against a MariaDB database and automatically uses the "pre" mode if so.

  • mariaDB - This is a deprecated option replaced by orderMode. If true (Boolean), the "pre" mode is forced.

  • databaseCharacterSet - The database character set. Used, for example, for case conversion in case-insensitive tests. Defaults to "utf8".

  • useLocalTimezone - When true, the driver will assume that the database is running in the same timezone as the application. By default, the database is expected to run in UTC timezone.

Normally, a factory is created once by the application when it starts up and is used to construct DBOs throughout the application's lifecycle.

The DBO factory can be used to construct four types of DBOs:

  • Fetch DBO for searching and loading records from the database.

  • Insert DBO for creating new records.

  • Update DBO for patching existing records.

  • Delete DBO for deleting records.

Some most basic usage examples for the four follow.

Fetching Records

To search and load Order records from the database described above, the following code could be used:

// build a fetch DBO for selecting 5 recent pending orders for a specific account
const fetchDBO = dboFactory.buildFetch('Order', {
 
    // select all order record properties
    props: [ '*' ],
 
    // filter by status and account id passed in as a query parameter when executed
    filter: [
        [ 'status => is', 'PENDING' ],
        [ 'accountRef => is', dbos.param('accountId') ]
    ],
 
    // order in descending order by order placement timestamp
    order: [
        'placedOn => desc'
    ],
 
    // select first 5 matched order records (that's right, records, not rows!)
    range: [ 0, 5 ]
});
 
// configure MySQL database connection
const connection = require('mysql').createConnection({
    host: 'localhost',
    database: 'mydatabase',
    user: 'myuser',
    password: 'mypassword'
});
 
// connect and do the operations
connection.connect(err => {
 
    // check if errors
    if (err) {
        console.error('connection error');
        throw err;
    }
 
    // execute the fetch DBO on the connection and close it before exiting
    fetchDBO.execute(connection, null, {
        accountId: 10 // for example we want orders for the account id #10
    }).then(
        result => {
            console.log('result:\n' + JSON.stringify(result, null, '  '));
            connection.end();
        },
        err => {
            console.error('error:', err);
            connection.end();
        }
    );
});

The result object will include a records property, which will be an array with all matched order records (up to 5 in our example), and may look something like this:

{
  "recordTypeName": "Order",
  "records": [
    {
      "id": 1,
      "accountRef": "Account#10",
      "placedOn": "2017-02-20T18:32:55.000Z",
      "status": "PENDING",
      "items": [
        {
          "id": 101,
          "productRef": "Product#1",
          "quantity": 1
        },
        {
          "id": 102,
          "productRef": "Product#2",
          "quantity": 10
        }
      ]
    },
    {
      "id": 2,
      ...
    },
    ...
  ]
}

Don't mind the null passed into the DBO's execute() method as the second argument for now. It is for the actor performing the operation (anonymous in this case) and it is explained later.

We could request to fetch only specific record properties and also include referred records such as the Products and the Accounts:

const fetchDBO = dboFactory.buildFetch('Order', {
 
    // select only specific properties
    props: [
        '.count',               // include total count of matched orders
        'placedOn',             // only placedOn from the order
        'items.quantity',       // plus quantity for the items
        'items.productRef.*',   // plus product and all product properties
        'accountRef.firstName', // plus account first name
        'accountRef.lastName'   // and the last name
    ],
    ...
});

The result then would look something like the following:

{
  "recordTypeName": "Order",
  "count": 12,
  "records": [
    {
      "id": 1,
      "accountRef": "Account#10",
      "placedOn": "2017-02-20T18:32:55.000Z",
      "items": [
        {
          "productRef": "Product#1",
          "quantity": 1
        },
        {
          "productRef": "Product#2",
          "quantity": 10
        }
      ]
    },
    {
      "id": 2,
      ...
    },
    ...
  ],
  "referredRecords": {
    "Account#10": {
      "firstName": "John",
      "lastName": "Silver"
    },
    "Product#1": {
      "id": 1,
      "name": "Rope",
      "price": 9.99
    },
    "Product#2": {
      "id": 2,
      "name": "Nails",
      "price": 4.5
    }
  }
}

Note that the record id is always included even though not explicitely selected. Also, intermediate properties in the selected property paths are included.

The count is a so called super-aggregate, which is automatically added to the records types library. The detailed description of super-aggregates is provided later in this manual. For now, it shows the total number of matched records regardless of the query range, which can be convenient on the client side to drive the search results pagination.

Creating Records

To create a new order record we could use the following code:

// create the DBO and pass new order record template to it
const insertDBO = dboFactory.buildInsert('Order', {
    accountRef: 'Account#10',
    placedOn: new Date(),
    status: 'PENDING',
    items: [
        {
            productRef: 'Product#1',
            quantity: 1
        },
        {
            productRef: 'Product#2',
            quantity: 10
        }
    ]
});
 
// execute the DBO
insertDBO.execute(connection, null).then(
    recordId => {
        console.log('new Order id: ' + recordId);
    },
    err => {
        console.error('error:', err);
    }
);

In our example the record ids are auto-generated in the database, so we do not include them in the record template. The promise returned by the insert DBO resolves to the new record id.

Updating Records

Updating records involves special objects called patches, which are specifications of what needs to be changed in the matched records. Let's say we want to make the following changes to an order with a specific id:

  1. Update quantity on the first order line item.

  2. Add a new line item to the order.

  3. Change the order status.

The following code can be used to do that:

// build the patch specification
const patches = require('x2node-patches');
const patch = patches.build(recordTypes, 'Order', [
    { op: 'replace', path: '/items/0/quantity', value: 2 },
    { op: 'add', path: '/items/-', value: {
        productRef: 'Product#3',
        quantity: 1
    } },
    { op: 'replace', path: '/status', value: 'PROCESSING' }
]);
 
// create the DBO passing the patch and the order record selector filter
const updateDBO = dboFactory.buildUpdate('Order', patch, [
    [ 'id => is', dbos.param('orderId') ]
]);
 
// execute the DBO
updateDBO.execute(connection, null, null, {
    orderId: 1
}).then(
    result => {
        console.log('update operation status:\n' + JSON.stringify(result, null, '  '));
    },
    err => {
        console.error('error:', err);
    }
);

The example above uses X2 Framework's x2node-patches module to build the patch specification using JSON Patch notation.

The third null argument to the DBO's execute() method is for an optional record validation function that allows validating records after the patch is applied but before the record is saved into the database. This functionality is described later in this manual.

The result object returned by the operation will contain information about what records were updated as well as the updated records data itself. This is also described in detail later.

Deleting Records

Deleting an order record could be done like this:

// build the DBO for the specific order id
const deleteDBO = dboFactory.buildDelete('Order', [
    [ 'id => is', dbos.param('orderId') ]
]);
 
// execute the DBO and pass the order id to it
deleteDBO.execute(connection, null, {
    orderId: 1
}).then(
    result => {
        console.log('delete operation status:\n' + JSON.stringify(result, null, '  '));
    },
    err => {
        console.error('error:', err);
    }
);

The result object will tell if any records were matched and actually deleted.

Debug Logging

Sometimes it is useful to see what SQL statements are run against the database. To turn on the DBOs module's debug logging, which includes that information, the NODE_DEBUG environment variable must include word "X2_DBO" (see Node.js API docs for details).

Record Type Definitions

The DBOs module introduces a number of attributes used in record types library definitions to map records and their properties to the database tables and columns. This mapping allows the DBO factory to construct the SQL queries. The DBOs module itself is a record types library extension and must be added to the library for the extended attributes to get processed:

const records = require('x2node-records');
const dbos = require('x2node-dbos');
 
const recordTypes = records.with(dbos).buildLibrary({
    ...
});

Mapping Record Types

Every record type must have the main table, to which it is mapped. This is the table that has the record id as its primary key and normally stores the bulk of the scalar record properties as its columns. To associate a record type with a table, a table attribute is used in the definition:

const recordTypes = records.with(dbos).buildLibrary({
    recordTypes: {
        ...
        'Order': {
            table: 'orders',
            properties: {
                ...
            }
        },
        ...
    }
});

If table attribute is not specified, the record type name is used.

Mapping Stored Record Properties

The term stored property is used to describe record properties that belong to the record type, are stored together with the records of the type. Later we will see that not all properties defined on a record type are stored properties. For example, some properties may be calculated on the fly when records are fetched from the database and therefore are not stored. Other properties may be stored but belong to a different record type and are imported into another record type. Views supported by the basic x2node-records module are another example of properties that are not stored.

A number of attributes specific to the DBOs module is used to map stored record properties to the tables and columns.

Scalar Properties

The simples case of a record property is a scalar property stored in the record type's main table column. To associate such property with the specific column, a column property definition attribute is used:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            ...
            'firstName': {
                valueType: 'string',
                column: 'fname'
            },
            'zip': {
                valueType: 'string',
                optional: true
            }
        }
    },
    ...
}

This will map the firstName property to the fname column of the accounts table and the zip property to its zip column (if column attribute is not specified, the property name is used):

CREATE TABLE accounts (
    ...
    fname VARCHAR(30) NOT NULL,
    zip CHAR(5),
    ...
);

The column data type must match the property value type. Also, the column may be nullable if the property is optional.

A property does not have to be stored in the main record type table. If a property is stored in a separate table, the property definition must have a table attribute and a parentIdColumn attribute, which specifies the column in the property table that points back at the parent record id. Normally it does not make much sense to store scalar, simple value properties in a separate table, but it will work nonetheless. It makes more sense when it comes to nested object properties. For example, if an account address is stored in a separate table in a one-to-one relation with the main record table:

CREATE TABLE accounts (
    id INTEGER UNSIGNED PRIMARY KEY,
    ...
);
 
CREATE TABLE account_addresses (
    account_id INTEGER UNSIGNED NOT NULL UNIQUE,
    street VARCHAR(50) NOT NULL,
    ...
    FOREIGN KEY (account_id) REFERENCES accounts (id)
);

then it can be mapped like this:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            'id': {
                valueType: 'number',
                role: 'id'
            },
            ...
            'address': {
                valueType: 'object',
                table: 'account_addresses',
                parentIdColumn: 'account_id',
                properties: {
                    'street': {
                        valueType: 'string'
                    }
                    ...
                }
            }
        }
    },
    ...
}

Collection Properties

When it comes to array and map properties, use of property tables becomes necessary due to the RDBMS nature. The example above can be modified to allow multiple addresses on an account:

CREATE TABLE account_addresses (
    id INTEGER UNSIGNED PRIMARY KEY,
    account_id INTEGER UNSIGNED NOT NULL,
    street VARCHAR(50) NOT NULL,
    ...
    FOREIGN KEY (account_id) REFERENCES accounts (id)
);

and the record type definition:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            'id': {
                valueType: 'number',
                role: 'id'
            },
            ...
            'addresses': {
                valueType: 'object[]',
                table: 'account_addresses',
                parentIdColumn: 'account_id',
                properties: {
                    'id': {
                        valueType: 'number',
                        role: 'id'
                    },
                    'street': {
                        valueType: 'string'
                    }
                    ...
                }
            }
        }
    },
    ...
}

If an address has a type ("Home", "Work", etc.):

CREATE TABLE account_addresses (
    id INTEGER UNSIGNED PRIMARY KEY,
    account_id INTEGER UNSIGNED NOT NULL,
    type VARCHAR(10) NOT NULL,
    street VARCHAR(50) NOT NULL,
    ...
    FOREIGN KEY (account_id) REFERENCES accounts (id),
    UNIQUE (account_id, type)
);

then we could have the addresses on the account as a map:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            'id': {
                valueType: 'number',
                role: 'id'
            },
            ...
            'addresses': {
                valueType: 'object{}',
                keyPropertyName: 'type',
                table: 'account_addresses',
                parentIdColumn: 'account_id',
                properties: {
                    'id': {
                        valueType: 'number',
                        role: 'id'
                    },
                    'type': {
                        valueType: 'string'
                    },
                    'street': {
                        valueType: 'string'
                    }
                    ...
                }
            }
        }
    },
    ...
}

If we don't want to have the address type as a property on the address record, then the key column can be specified using keyColumn property definition attribute instead of using keyPropertyName:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            'id': {
                valueType: 'number',
                role: 'id'
            },
            ...
            'addresses': {
                valueType: 'object{}',
                table: 'account_addresses',
                parentIdColumn: 'account_id',
                keyColumn: 'type',
                keyValueType: 'string',
                properties: {
                    'id': {
                        valueType: 'number',
                        role: 'id'
                    },
                    'street': {
                        valueType: 'string'
                    }
                    ...
                }
            }
        }
    },
    ...
}

Note, that in that case the keyValueType attribute must be provided as well (see x2node-rsparser module for details).

Simple value collection properties utilize the column attribute to map the column in the collection table. For example, if we have a list of phone numbers associated with the account:

CREATE TABLE account_phones (
    account_id INTEGER UNSIGNED NOT NULL,
    phone CHAR(10) NOT NULL,
    FOREIGN KEY (account_id) REFERENCES accounts (id)
);

the definition will be:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            ...
            'phones': {
                valueType: 'string[]',
                table: 'account_phones',
                parentIdColumn: 'account_id',
                column: 'phone'
            }
        }
    },
    ...
}

And if we have a phone type as a map key:

CREATE TABLE account_phones (
    account_id INTEGER UNSIGNED NOT NULL,
    type VARCHAR(10) NOT NULL,
    phone CHAR(10) NOT NULL,
    FOREIGN KEY (account_id) REFERENCES accounts (id),
    UNIQUE (account_id, type)
);

the definition will be:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            ...
            'phones': {
                valueType: 'string{}',
                table: 'account_phones',
                parentIdColumn: 'account_id',
                keyColumn: 'type',
                keyValueType: 'string',
                column: 'phone'
            }
        }
    },
    ...
}

Note that use of keyColumn attribute becomes the only option for simple value map properties (no keyPropertyName is appropriate).

There is an important deviation between how the keyColumn and keyPropertyName attributes work when it comes to reference property maps. Such maps (as well as arrays) introduce a link table between the main tables of the referrer and the referred record types. When the keyPropertyName is used to map the map key, the key is located in the referred record type table. For example, if we extract the address records in the examples above into a separate record type, the tables will be:

CREATE TABLE accounts (
    id INTEGER UNSIGNED PRIMARY KEY,
    ...
);
 
CREATE TABLE account_addresses (
    account_id INTEGER UNSIGNED NOT NULL,
    address_id INTEGER UNSIGNED NOT NULL,
    FOREIGN KEY (account_id) REFERENCES accounts (id),
    FOREIGN KEY (address_id) REFERENCES addresses (id),
    UNIQUE (account_id, address_id)
);
 
CREATE TABLE addresses (
    id INTEGER UNSIGNED PRIMARY KEY,
    type VARCHAR(10) NOT NULL,
    street VARCHAR(50) NOT NULL,
    ...
);

and the definitions:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            'id': {
                valueType: 'number',
                role: 'id'
            },
            ...
            'addressRefs': {
                valueType: 'ref(Address){}',
                keyPropertyName: 'type',
                table: 'account_addresses',
                parentIdColumn: 'account_id',
                column: 'address_id'
            }
        }
    },
    'Address': {
        table: 'addresses',
        properties: {
            'id': {
                valueType: 'number',
                role: 'id'
            },
            'type': {
                valueType: 'string'
            },
            'street': {
                valueType: 'string'
            },
            ...
        }
    },
    ...
}

So, the type property for the map key is taken from the addresses table. On the other hand, if keyColumn attribute is used, the column is mapped to the link table and not the referred record type table:

CREATE TABLE accounts (
    id INTEGER UNSIGNED PRIMARY KEY,
    ...
);
 
CREATE TABLE account_addresses (
    account_id INTEGER UNSIGNED NOT NULL,
    type VARCHAR(10) NOT NULL,
    address_id INTEGER UNSIGNED NOT NULL,
    FOREIGN KEY (account_id) REFERENCES accounts (id),
    FOREIGN KEY (address_id) REFERENCES addresses (id),
    UNIQUE (account_id, type)
);
 
CREATE TABLE addresses (
    id INTEGER UNSIGNED PRIMARY KEY,
    street VARCHAR(50) NOT NULL,
    ...
);

and the definitions:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            'id': {
                valueType: 'number',
                role: 'id'
            },
            ...
            'addressRefs': {
                valueType: 'ref(Address){}',
                table: 'account_addresses',
                parentIdColumn: 'account_id',
                keyColumn: 'type',
                keyValueType: 'string',
                column: 'address_id'
            }
        }
    },
    'Address': {
        table: 'addresses',
        properties: {
            'id': {
                valueType: 'number',
                role: 'id'
            },
            'street': {
                valueType: 'string'
            },
            ...
        }
    },
    ...
}

Dependent Record References

Some reference properties are not stored with the referring record. Instead, there is a reference property in the referred record type that points back at the referring record. The referred record type in this case is called a dependent record type, because its records can exist only in the context of the referring record (unless the reverse reference property is optional), meaning the referring record must exist for the referred record to point at it.

For example, if we have records types Account and Order and the account has a list of references to the orders made for that account. The Order, even though a separate record type, has a reference back to the account it belongs to and can only exist in a context of an account. That makes the Order a dependent record type.

Here are the tables:

CREATE TABLE accounts (
    id INTEGER UNSIGNED AUTO_INCREMENT PRIMARY KEY,
    ...
);
 
CREATE TABLE orders (
    id INTEGER UNSIGNED AUTO_INCREMENT PRIMARY KEY,
    account_id INTEGER UNSIGNED NOT NULL,
    ...
    FOREIGN KEY (account_id) REFERENCES accounts (id)
);

and the definitions:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            'id': {
                valueType: 'number',
                role: 'id'
            },
            ...
            'orderRefs': {
                valueType: 'ref(Order)[]',
                reverseRefProperty: 'accountRef'
            }
        }
    },
    'Order': {
        table: 'orders',
        properties: {
            'id': {
                valueType: 'number',
                role: 'id'
            },
            'accountRef': {
                valueType: 'ref(Account)',
                column: 'account_id',
                modifiable: false
            },
            ...
        }
    },
    ...
}

The orderRefs property of the Account record type is not stored anywhere in any tables and columns associated with it, so it is not a stored property of the Account record type. Instead, it is a property of the dependent Order record type and is stored with the order records in accountRef property. This is why the orderRefs property does not have any table and column definition attributes. Instead, it has a reverseRefProperty attribute that names the property in the referred record type that points back at the referring record.

The dependent record reference properties are only allowed as top record type properties (not in nested objects). And the reverse reference properties in the referred record types are also only allowed to be top record type properties, plus they are required to be scalar, non-polymorph and not be dependent record references themselves. They are, however, allowed to be stored in a separate table (this may be useful when keyColumn is used with a dependent record reference map property, in which case the map key column will reside in the separate link table).

As it will be shown later in this manual, normally, when a record with dependent record reference properties is deleted, the operation is automatically cascaded on to the dependent records, which are deleted as well. This is called strong dependencies. In the example above, it makes sense to delete all Order records associated with an Account when the Account record is deleted from the database. Sometimes, however, a dependent reference mechanism needs to be used to import a reference property to a record (for data access convenience), but the referred record type is not exactly dependent. This is called a weak dependence. One side effect of a weak dependence is that the deletion operation is not cascaded over it (the operation will fail on the database level if referred records exist and foreign key constraints are properly utilized). To make a dependent reference property weak, a weakDependency property definition attribute can be added with value true.

Shared Link Tables

Sometimes, two record types may have references at each other, but none of them is dependent on another. For example, if we have record types Account and Address and they are in a many-to-many relationship so that a single address can be shared by multiple accounts and an account can have multiple addresses:

CREATE TABLE accounts (
    id INTEGER UNSIGNED PRIMARY KEY,
    ...
);
 
CREATE TABLE accounts_addresses (
    account_id INTEGER UNSIGNED NOT NULL,
    address_id INTEGER UNSIGNED NOT NULL,
    FOREIGN KEY (account_id) REFERENCES accounts (id),
    FOREIGN KEY (address_id) REFERENCES addresses (id),
    UNIQUE (account_id, address_id)
);
 
CREATE TABLE addresses (
    id INTEGER UNSIGNED PRIMARY KEY,
    ...
);

At the same time, we want to have a list of addresses on the account records and we want to have a list of accounts that use an address on the address record. It can be done like this:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            'id': {
                valueType: 'number',
                role: 'id'
            },
            ...
            'addressRefs': {
                valueType: 'ref(Address)[]',
                table: 'accounts_addresses',
                parentIdColumn: 'account_id',
                column: 'address_id'
            }
        }
    },
    'Address': {
        table: 'addresses',
        properties: {
            'id': {
                valueType: 'number',
                role: 'id'
            },
            ...
            'accountRefs': {
                valueType: 'ref(Account)[]',
                table: 'accounts_addresses',
                parentIdColumn: 'address_id',
                column: 'account_id'
            }
        }
    },
    ...
}

Properties addressRefs on record type Account and accountRefs on record type Address share the same link table accounts_addresses. This case is unique in the sense that modification of a record of one record type may have a side-effect of making changes to stored properties of some records of another record type. Such record types and the properties that reference each other are known as entangled.

Calculated Properties

It is possible to have properties on a record type that are not stored in the database directly, but are calculated every time a record is fetched from the database. Such properties are called calculated properties. Instead of a column and table, a calculated property has a value expression associated with it using valueExpr property definition attribute. The valueExpr attribute is a string that uses a special expression syntax that includes value literals, references to other properties of the record, value transformation functions and operators. Here is the expression language EBNF definition:

Expr = [ "+" | "-" ] , Term , { ( "+" | "-" ) , Term }
    | String
    | Boolean
    ;
 
Term = Factor , { ( "*" | "/" ) , Factor }
    ;
 
Factor = FunctionCall
    | PropertyRef
    | Number
    | "(" , Expr , ")"
    ;
 
FunctionCall = FunctionName , "(" , Expr , { "," , Expr } , ")"
    ;
 
String = '"' , { CHAR } , '"' | "'" , { CHAR } , "'" ;
Boolean = "true" | "false" ;
Number = DIGIT , { DIGIT } , [ "." , DIGIT , { DIGIT } ] ;
FunctionName = ? See Description ? ;
PropertyRef = ? See Description ? ;

The following value transformation functions are supported:

  • length, len - Takes single string argument, yields string length.

  • lower, lc, lcase, lowercase - Takes single string argument, yields all lower-case string.

  • upper, uc, ucase, uppercase - Takes single string argument, yields all upper-case string.

  • substring, sub, mid, substr - Yields substring of the string provided as the first argument. The second argument is the first substring character index, starting from zero. The optional third argument is the maximum substring length. If not provided, the end of the input string is used.

  • lpad - Pads the string provided as the first argument on the left to achieve the minimum length provided as the second argument using the character provided as the third argument as the padding character.

  • concat, cat - Concatenate provided string arguments.

  • coalesce - Yield first non-null argument.

The properties in the expressions are referred using dot notation. In a calculated nested object property, to refer to a property in the parent object a caret character is used to denote the immediate parent.

For example, given the record types library used in the opening Usage section, the Order records could be augmented with some calculated properties:

{
    ...
    'Order': {
        ...
        properties: {
            ...
            'customerName': {
                valueType: 'string',
                valueExpr: 'concat(accountRef.firstName, " ", accountRef.lastName)'
            },
            ...
            'items': {
                ...
                properties: {
                    ...
                    'totalCost': {
                        valueType: 'number',
                        valueExpr: 'productRef.price * quantity'
                    },
                    'orderStatus': {
                        valueType: 'string',
                        valueExpr: '^.status'
                    }
                }
            }
        }
    },
    ...
}

This example shows that reference properties can be hopped over to access properties of the referred records. Also, if there were more nesting levels, jumping over multiple children (prop.nestedProp.moreNestedProp) and multiple parents (^.^.grandparentProp.nestedProp) is possible with the dot notation.

When the records with calculated properties are fetched from the database, the expressions are converted into SQL value expressions and are calculated on the database side.

Aggregate Properties

A special case of a calculated property is an aggregate property. An aggregate property requires:

  • A collection property, elements of which it aggregates. The collection is called aggregated collection.

  • An expression for the aggregated values, called aggregated value expression.

  • The aggregation function, which determines how the values are aggregated.

  • And optionally a filter to include only certain elements of the aggregated collection.

An aggregate property definition attribute is used to specify these elements. For example, our Order records could include properties that aggregate the order line items like the following:

{
    ...
    'Order': {
        table: 'orders',
        properties: {
            ...
            'itemsCount': {
                valueType: 'number',
                aggregate: {
                    collection: 'items',
                    valueExpr: 'id => count'
                }
            },
            'orderTotal': {
                valueType: 'number',
                aggregate: {
                    collection: 'items',
                    valueExpr: 'productRef.price * quantity => sum'
                }
            },
            'expensiveProductsCount': {
                valueType: 'number',
                aggregate: {
                    collection: 'items',
                    valueExpr: 'quantity => sum',
                    filter: [
                        [ 'productRef.price => min', 1000 ]
                    ]
                }
            },
            ...
            'items': {
                valueType: 'object[]',
                table: 'order_items',
                parentIdColumn: 'order_id',
                properties: {
                    'id': {
                        valueType: 'number',
                        role: 'id'
                    },
                    'productRef': {
                        valueType: 'ref(Product)',
                        column: 'product_id',
                        modifiable: false
                    },
                    'quantity': {
                        valueType: 'number'
                    }
                }
            }
        }
    },
    ...
}

The value expressions for the aggregate properties have format:

Expr => AggregateFunc

Where Expr is a regular value expression calculated in the context of the aggregated collection property, and AggregateFunc is one of:

  • count - Number of unique values yielded by the aggregated expression.

  • sum - Sum of the values yielded by the aggregated expression.

  • min - The smallest value yielded by the aggregated expression.

  • max - The largest value yielded by the aggregated expression.

  • avg - Average of the values yielded by the aggregated expression.

The optional filter specification format will be discussed later in this manual when we talk about fetch DBO.

An aggregate property can also be a map, in which case the aggregation is further subdivided and grouped by the map key. To specify the map key use keyPropertyName attribute in the aggregate property definition.

Embedded Objects

Properties of a scalar nested object do not have to be stored in a separate table. The nested object's properties can be stored in the columns of the main record type table and the nested object can be used simply to organize the JSON structure of the record. For example, an address on an Account record could be stored in the same table:

CREATE TABLE accounts (
    id INTEGER UNSIGNED AUTO_INCREMENT PRIMARY KEY,
    fname VARCHAR(30) NOT NULL,
    lname VARCHAR(30) NOT NULL,
    street VARCHAR(50) NOT NULL,
    city VARCHAR(50) NOT NULL,
    state CHAR(2) NOT NULL,
    zip CHAR(5) NOT NULL
);

but be a nested object in the record type:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            'id': {
                valueType: 'number',
                role: 'id'
            },
            'firstName': {
                valueType: 'string',
                column: 'fname'
            },
            'lastName': {
                valueType: 'string',
                column: 'lname'
            },
            'address': {
                valueType: 'object',
                properties: {
                    'street': {
                        valueType: 'string'
                    },
                    'city': {
                        valueType: 'string'
                    },
                    'state': {
                        valueType: 'string'
                    },
                    'zip': {
                        valueType: 'string'
                    }
                }
            }
        }
    },
    ...
}

Since the address property does not have a table attribute, the framework knows that it is stored in the parent table.

In the example above, the address property is required. Things turn slightly more complicated if the property needs to be optional. First, the NOT NULL constraints are removed from the table:

CREATE TABLE accounts (
    ...
    street VARCHAR(50),
    city VARCHAR(50),
    state CHAR(2),
    zip CHAR(5)
);

But now, the framework needs to be able to tell if the address nested object is present on a record it's loading from the database or not. To do that, the presenceTest attribute is specified on the property definition. The presence test is a Boolean expression written as a filter specification, which is discussed in detail later in this manual. But here is our example:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            ...
            'address': {
                valueType: 'object',
                optional: true, // address is now optional
                presenceTest: [
                    [ 'state => present' ],
                    [ 'zip => present' ]
                ],
                properties: {
                    'street': {
                        valueType: 'string',
                        optional: true
                    },
                    'city': {
                        valueType: 'string',
                        optional: true
                    },
                    'state': {
                        valueType: 'string'
                    },
                    'zip': {
                        valueType: 'string'
                    }
                }
            }
        }
    },
    ...
}

This definition makes properties street and city optional, but state and zip are still required. The presence test checks if state and zip are present on the record, and if they are not, the whole address property is considered to be absent.

Polymorphic Objects

Polymorphic objects are treated very similarly to nested objects where each polymorphic object subtype is like a nested object property on the base polymorphic object with the properties that describe the subtype-specific properties. The table mappings work the same as for scalar nested objects. For example, if we have two types of payment information that can be associated with an account—credit cards and bank accounts—the tables could be:

CREATE TABLE accounts (
    id INTEGER UNSIGNED AUTO_INCREMENT PRIMARY KEY,
    fname VARCHAR(30) NOT NULL,
    lname VARCHAR(30) NOT NULL
);
 
CREATE TABLE account_creditcards (
    account_id INTEGER UNSIGNED NOT NULL UNIQUE,
    association VARCHAR(20) NOT NULL,
    last4digits CHAR(4) NOT NULL,
    expdate CHAR(4) NOT NULL,
    FOREIGN KEY (account_id) REFERENCES accounts (id)
);
 
CREATE TABLE account_bankaccounts (
    account_id INTEGER UNSIGNED NOT NULL UNIQUE,
    routing_num CHAR(9) NOT NULL,
    account_type VARCHAR(10) NOT NULL,
    last4digits CHAR(4) NOT NULL,
    FOREIGN KEY (account_id) REFERENCES accounts (id)
);

then the record type definition would be:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            ...
            'paymentInfo': {
                valueType: 'object',
                typePropertyName: 'type',
                subtypes: {
                    'CREDIT_CARD': {
                        table: 'account_creditcards',
                        parentIdColumn: 'account_id',
                        properties: {
                            'association': {
                                valueType: 'string'
                            },
                            'last4Digits': {
                                valueType: 'string',
                                column: 'last4digits'
                            },
                            'expirationDate': {
                                valueType: 'string',
                                column: 'expdate'
                            }
                        }
                    },
                    'BANK_ACCOUNT': {
                        table: 'account_bankaccounts',
                        parentIdColumn: 'account_id',
                        properties: {
                            'routingNumber': {
                                valueType: 'string',
                                column: 'routing_num'
                            },
                            'accountType': {
                                valueType: 'string',
                                column: 'account_type'
                            },
                            'last4Digits': {
                                valueType: 'string',
                                column: 'last4digits'
                            }
                        }
                    }
                }
            }
        }
    },
    ...
}

Properties common to all subtypes could be stored either in the parent table (in the example above the last4digits column is moved to the accounts table and the last4Digits property is moved to the properties section of the paymentInfo property definition), or they could be stored in a separate table:

CREATE TABLE accounts (
    id INTEGER UNSIGNED AUTO_INCREMENT PRIMARY KEY,
    fname VARCHAR(30) NOT NULL,
    lname VARCHAR(30) NOT NULL
);
 
CREATE TABLE account_paymentinfos (
    account_id INTEGER UNSIGNED NOT NULL UNIQUE,
    last4digits CHAR(4) NOT NULL,
    FOREIGN KEY (account_id) REFERENCES accounts (id)
);
 
CREATE TABLE account_creditcards (
    account_id INTEGER UNSIGNED NOT NULL UNIQUE,
    association VARCHAR(20) NOT NULL,
    expdate CHAR(4) NOT NULL,
    FOREIGN KEY (account_id) REFERENCES account_paymentinfos (id)
);
 
CREATE TABLE account_bankaccounts (
    account_id INTEGER UNSIGNED NOT NULL UNIQUE,
    routing_num CHAR(9) NOT NULL,
    account_type VARCHAR(10) NOT NULL,
    FOREIGN KEY (account_id) REFERENCES account_paymentinfos (id)
);

and the definitions:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            ...
            'paymentInfo': {
                valueType: 'object',
                typePropertyName: 'type',
                table: 'account_paymentinfos',
                parentIdColumn: 'account_id',
                properties: {
                    'last4Digits': {
                        valueType: 'string',
                        column: 'last4digits'
                    }
                },
                subtypes: {
                    'CREDIT_CARD': {
                        table: 'account_creditcards',
                        parentIdColumn: 'account_id',
                        properties: {
                            'association': {
                                valueType: 'string'
                            },
                            'expirationDate': {
                                valueType: 'string',
                                column: 'expdate'
                            }
                        }
                    },
                    'BANK_ACCOUNT': {
                        table: 'account_bankaccounts',
                        parentIdColumn: 'account_id',
                        properties: {
                            'routingNumber': {
                                valueType: 'string',
                                column: 'routing_num'
                            },
                            'accountType': {
                                valueType: 'string',
                                column: 'account_type'
                            }
                        }
                    }
                }
            }
        }
    },
    ...
}

When the framework builds queries for fetching account records in the examples above, it will join all the subtype tables and see which one has a record. Depending on that, it will figure out the nested object subtype. That logic relies on the database having a single record in only a single subtype table for a given base polymorphic record. In the second example, it is enforced by having a UNIQUE constraint on the account_id column of the account_paymentinfos table. In the first example, however, it is not completely enforced on the database level—physically it is possible to have a row in both account_creditcards and account_bankaccounts tables each sharing the same account id.

Sometimes, a subtype does not have any subtype-specific properties and therefore there is no need for a separate table for it. In that case, the framework cannot determine the subtype by joining the tables and simply checking which one has a record. To solve it, the type property needs to be actually stored in a column on the base polymorphic object's table. For example, if we have a polymorphic Event record type where subtype OPENED has a subtype-specific property openerName, which, for the example sake, is stored in a separate table, and subtype CLOSED does not have any subtype-specific properties. The tables are:

CREATE TABLE events (
    id INTEGER UNSIGNED AUTO_INCREMENT PRIMARY KEY,
    type VARCHAR(10) NOT NULL,
    happened_on TIMESTAMP
);
 
CREATE TABLE events_open (
    id INTEGER UNSIGNED NOT NULL UNIQUE,
    opener_name VARCHAR(50) NOT NULL,
    FOREIGN KEY (id) REFERENCES events (id)
);

The type column of the events table is used to store the event type (either "OPENED" or "CLOSED"). The definition should then be:

{
    ...
    'Event': {
        table: 'events',
        typePropertyName: 'type',
        typeColumn: 'type',
        properties: {
            'happenedOn': {
                valueType: 'datetime',
                column: 'happened_on'
            }
        },
        subtypes: {
            'OPENED': {
                table: 'events_open',
                parentIdColumn: 'id',
                properties: {
                    'openerName': {
                        valueType: 'string',
                        column: 'opener_name'
                    }
                }
            },
            'CLOSED': {
                properties: {}
            }
        }
    },
    ...
}

Note the typeColumn attribute that tells the framework where to find/store the record subtype.

Ordered Collections

When collection properties are fetched from the database, it is possible to specify the order in which they are returned. For that, any collection property definition can have an order attribute. For example:

{
    ...
    'Order': {
        table: 'orders',
        properties: {
            ...
            'items': {
                valueType: 'object[]',
                table: 'order_items',
                parentIdColumn: 'order_id',
                order: [ 'productRef.name', 'quantity => desc' ],
                properties: {
                    'id': {
                        valueType: 'number',
                        role: 'id'
                    },
                    'productRef': {
                        valueType: 'ref(Product)',
                        column: 'product_id',
                        modifiable: false
                    },
                    'quantity': {
                        valueType: 'number'
                    }
                }
            }
        }
    },
    ...
}

Or, another example:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            ...
            'orderRefs': {
                valueType: 'ref(Order)[]',
                reverseRefProperty: 'accountRef',
                order: [ 'placedOn => desc' ]
            }
        }
    },
    ...
}

The order specification is described in detail later in this manual when we talk about the fetch DBO.

Note, that to order a simple value collection by the value, $value pseudo-property reference can be used.

Array Index Column

Unless an order attribute is specified on an array property, the order, in which the elements will be returned in the fetch DBO result, is undetermined. It is possible, however, to make an array property strictly ordered by the insertion order. To do that, the table used to store the array elements can have a special element index column maintained automatically by the framework. For example if we want to have tags on Product records and we want the tags list to have specific order, we add a tag index column to the table:

CREATE TABLE products (
    id INTEGER UNSIGNED AUTO_INCREMENT PRIMARY KEY,
    ...
);
 
CREATE TABLE product_tags (
    product_id INTEGER UNSIGNED NOT NULL,
    ind TINYINT UNSIGNED NOT NULL,
    tag VARCHAR(20) NOT NULL,
    FOREIGN KEY (product_id) REFERENCES products (id),
    UNIQUE (product_id, ind)
);

To let the framework manage the index column, indexColumn attribute is added to the array property definition:

{
    ...
    'Product': {
        table: 'accounts',
        properties: {
            ...
            'tags': {
                valueType: 'string[]',
                table: 'product_tags',
                parentIdColumn: 'product_id',
                indexColumn: 'ind',
                column: 'tag'
            }
        }
    },
    ...
}

Whenever the DBOs are used to create and modify the tags array, the framework will be generating additional SQL to maintain the index values in sync with the array element indexes. And when a fetch DBO is used to fetch Product records, the tags property will always be ordered by the index column.

The same works with nested object arrays as well.

Filtered Collection Views

It is also possible to specify filtered views of collection properties that include only those elements that match a certain criteria. For example:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            ...
            'orderRefs': {
                valueType: 'ref(Order)[]',
                reverseRefProperty: 'accountRef'
            },
            'pendingOrderRefs': {
                viewOf: 'orderRefs',
                filter: [
                    [ 'status => is', 'PENDING' ]
                ]
            }
        }
    },
    ...
}

Note that the filter attribute can be specified only on a view property, not on the actual property itself, which always includes all of its elements.

The filter specification is described in detail later in this manual when we talk about the fetch DBO.

Record Meta-Info Properties

The DBOs module introduces a number special meta-info properties that can be specified on a record type and are maintained automatically by the framework. Such properties use role property definition attribute to specify their type. For example:

{
    ...
    'Account': {
        table: 'accounts',
        properties: {
            'id': {
                valueType: 'number',
                role: 'id'
            },
            'version': {
                valueType: 'number',
                role: 'version'
            },
            'createdOn': {
                valueType: 'datetime',
                role: 'creationTimestamp',
                column: 'created_on'
            },
            'createdBy': {
                valueType: 'string',
                role: 'creationActor',
                column: 'created_by'
            },
            'modifiedOn': {
                valueType: 'datetime',
                role: 'modificationTimestamp',
                column: 'modified_on'
            },
            'modifiedBy': {
                valueType: 'string',
                role: 'modificationActor',
                column: 'modified_by'
            },
            ...
        }
    },
    ...
}

Which has to be reflected in the accounts database table:

CREATE TABLE accounts (
    id INTEGER UNSIGNED AUTO_INCREMENT PRIMARY KEY,
    version INTEGER UNSIGNED NOT NULL,
    created_on TIMESTAMP(3) DEFAULT 0,
    created_by VARCHAR(30) NOT NULL,
    modified_on TIMESTAMP(3NULL,
    modified_by VARCHAR(30),
    ...
);

The following meta-info property roles are supported:

  • version - Record version. A new record will have version 1. Every time a record is updated, the framework will increment the version property.

  • creationTimestamp - Timestamp when the record was created.

  • creationActor - Stamp of the actor that created the record (see x2node-common module for the framework's notion of actor).

  • modificationTimestamp - Timestamp when the record was last time modified. The property is optional by default.

  • modificationActor - Stamp of the actor that modified the record last time. The property is optional by default.

All meta-info properties are marked as non-modifiable and from the application point of view they are read only.

Generated Properties

A generated property is a property whose value is automatically assigned when a new record is created. Therefore, values for generated properties do not have to be provided in the record template passed into the insert DBO. A typical example of a generated property is a record id auto-assigned by the database (the MySQL's AUTO_INCREMENT columns, PostgreSQL's SERIAL columns, etc.).

A generated property has a generator associated with it. The generator associated with properties auto-assigned by the database, like the record ids mentioned above, is called auto. This is the default generator assigned to all properties that have role attribute equal "id" unless explicitely overridden. To explicitely assign a generator to a property, generator property definition attribute can be used. It can take one of the three possible values:

  • String "auto" for the auto generator. The values are generated by the database and are made available to the application upon subsequent record read.

  • A null, to disable a generator otherwise assigned to the property by default. This makes the property not generated and the value must be provided by the application in the record template when the record is submitted to the insert DBO.

  • A generator function. The function is called by the insert DBO when the value is needed before the record data is sent to the database for saving. The function takes a single argument—the database connection (driver-specific)—and returns either the generated value, or a Promise of it. The property descriptor is made available to the function as this.

For example:

let NEXT_TEMPORAL_ID = Date.now();
 
...
 
recordTypes = {
    ...
    'Account': {
        ...
        properties: {
            'id': {
                valueType: 'number',
                role: 'id',
                generator: 'auto' // no need for this, just a demo
            },
            'events': {
                valueType: 'object[]',
                ...
                properties: {
                    'eventUUID': {
                        valueType: 'string',
                        role: 'id',
                        generator: null // assigned by the application
                    },
                    'temporalId': {
                        valueType: 'number',
                        generator: function() { return NEXT_TEMPORAL_ID++; }
                    },
                    ...
                }
            },
            ...
        }
    }
    ...
};

The custom generator function in this example does not need the database connection. A function that, for example, reads the value from a sequence in the database would need it and it would get it as its only argument and return a promise of the result.

As mentioned earlier, by default all id properties are assigned auto generator. To change that behavior for the record types library as a whole, the library definition attribute defaultIdGenerator can be used. For example, if for the whole library the record ids are assigned by the application, the auto id generation can be disabled:

const recordTypes = records.with(dbos).buildLibrary({
 
    defaultIdGenerator: null,
 
    recordTypes: {
        ...
    }
});

Super-Properties

Simetimes information needs to be fetched from the database that is not a specific record property. Instead, this may be information about a collection of records that match the query's criteria. Mostly, this is about aggregate values, such as the total count of matched records, or a sum of all Order amounts, etc. This functionality is supported via so-called super-properties or, if they are aggregates, super-aggregates. Super-aggregates can be added to a query specification to be included in the result.

Every record type automatically defines a super-aggregate called count, which reflects the number of records in the matched record set. It is possible to add custom super-aggregates as well. For example, if we want to be able to query the total amount for orders matching a certain criteria (or all orders available in the database, if no filter is provided with the query), as well as the number of pending orders, corresponding super-aggregates can be defined like this:

{
    ...
    'Order': {
        table: 'orders',
        properties: {
            'id': {
                valueType: 'number',
                role: 'id'
            },
            ...
            'status': {
                valueType: 'string'
            },
            ...
            'items': {
                valueType: 'object[]',
                table: 'order_items',
                parentIdColumn: 'order_id',
                properties: {
                    'id': {
                        valueType: 'number',
                        role: 'id'
                    },
                    'productRef': {
                        valueType: 'ref(Product)',
                        column: 'product_id',
                        modifiable: false
                    },
                    'quantity': {
                        valueType: 'number'
                    }
                }
            }
        },
        superProperties: {
            'countPending': {
                valueType: 'number',
                aggregate: {
                    collection: 'records',
                    valueExpr: 'id => count',
                    filter: [
                        [ 'status => is', 'PENDING' ]
                    ]
                }
            },
            'countByStatus': {
                valueType: 'number{}',
                keyPropertyName: 'status',
                aggregate: {
                    collection: 'records',
                    valueExpr: 'id => count'
                }
            },
            'totalAmount': {
                valueType: 'number',
                aggregate: {
                    collection: 'records.items',
                    valueExpr: 'productRef.price * quantity => sum'
                }
            }
        }
    },
    ...
}

Note that the records collection is referred in the super-aggregate expressions as records.

When a query with super-aggregates is executed, the super-aggregates are not a subject to the range specification, if any. They always reflect all records matching the filter regardless of the requested range.

Uniqueness of the Id Property

The framework makes an assumption that any property marked with role attribute equal "id" is unique within the whole table. This is certainly true for record ids, but sometimes a nested object id may be unique only within the parent record context, but not table-wide. To override the default framework's behavior and make it aware of the fact that the id property is not table-wide unique, a tableUnique attribute can be added to the id property definition with value false.

Fetch DBO

The fetch DBO is used to search records of a given record type and fetch the requested record data. The DBO is created using DBO factory's buildFetch() method, which takes the record type name and the query specification:

const fetchDBO = dboFactory.buildFetch('Order', {
    // the query specification goes here
});

Once built, the DBO can be used and reused multiple times, which may be helpful as, depending on the complexity of the query specification, the DBO construction may be a relatively costly operation.

To execute the DBO, its execute() method is called, which takes up to three arguments:

  • txOrCon - Database connection (or transaction object, described later in this manual).

  • actor - Optional actor performing the operation. If not provided, the operation is anonymous.

  • filterParams - If filter specification used to construct the DBO utilizes query parameters, this object provides the values for the parameters. Using query parameters in filter specifications helps making DBOs reusable. The keys in the provided object are parameter names and the values are the parameter values. Note, that when parameters are substituted in the SQL statement, no type transformation is performed by the framework. JavaScript strings are inserted as SQL strings, numbers as numbers, etc. Datetimes must be supplied as string in ISO format. References must be supplied as the referred record ids (strings or numbers depending on the referred record id value type).

The execute() method returns a Promise, which is fulfilled with the query result object. The query result object includes:

  • recordTypeName, which is the requested record type name.

  • records array of matched records, or empty array if none matched.

  • referredRecords, which is included if any referred records were requested to be fetched along with the main record set. The keys in the object are record references and the values are objects representing the referred records.

  • any requested super-properties.

The promise is rejected if an error occurs.

The query specification is an object that includes the following sections, each of which is optional and has a default behavior:

  • Specification of what record properties, referred records and super-properties to include in the result. Specified by the props array.

  • Filter specification that asks the DBO to include only those records that match the criteria. Specified by the filter array.

  • Order specification that tells the DBO how to order the records in the result's records array. Specified by the order array.

  • Range specification that tells the DBO to return only the specified subrange of all the matched records. Specified by the range two-element array.

  • Records locking specification that asks the DBO to lock matched records in a specific mode until the end of the transaction.

If no query specification is provided to the buildFetch() method, all records of the requested record type are included in the result with all the properties that are fetched by default (normally that includes all stored properties) and in no particular order. No referred records are fetched, no super-aggregates are fetch, and the DBO makes not effort to explicitely lock any matched records.

Selected Properties Specification

By default, the fetch DBO will fetch all stored properties of the matched records. Those include all properties that are not views, not calculated, not aggregates and not dependent record references. This default behavior can be overridden by using fetchByDefault attribute on the property definition, which can be either true or false, but generally is not recommended. Instead, to request only specific properties, the query specification can include a props property that is an array of property pattern strings. Each pattern can be:

  • A star "*" to include all properties fetched by default. In the essence, not providing a query with a properties specification is equivalent to providing it with props equal [ '*' ].

  • Specific property path in dot notation. All intermediate properties are automatically included as well. If the end property is a nested object, all of its properties that are fetched by default are included. If any of the intermediate properties is a reference, the referred record is fetched and added to the referredRecords collection in the result object (only the properties explicitely selected are included, unless a wildcard pattern is used described next).

  • A wildcard pattern, which is a property path in dot notation ending with ".*". This instructs the DBO to fetch the property and all of its children that would be fetched by default. In particular, if the property path is for a reference property, this allows fetching referred records and returning them in the referredRecords collection in the result object with all of their properties fetched by default.

  • Specific property path in dot notation prefixed with a dash "-" to exclude a property that would otherwise be included (as a consequence of a wildcard pattern, for example).

  • A super-property name prefixed with a dot "." to include the super-property.

See Fetching Records usage section for an example.

Filter Specification

By default, all records of the requested record type are matched. To restrict the matched records set, a filter property can be included in the query specification. The filter property is an array of filter terms (also known as filter specification elements). Each term can be either a specification of a test to perform on the record, or a logical junction of nested filters.

For example, to select all Order records for orders that were placed before a certain date and that have either status "PENDING" or "PROCESSING", the following filter specification can be used:

const fetchDBO = dboFactory.buildFetch('Order', {
    ...
    filter: [
        [ 'placedOn => lt', '2017-01-01T00:00:00.000Z' ],
        [ ':or', [
            [ 'status => is', 'PENDING' ],
            [ 'status => is', 'PROCESSING' ]
        ]]
    ],
    ...
});

Alternatively, this could be written as:

const fetchDBO = dboFactory.buildFetch('Order', {
    ...
    filter: [
        [ 'placedOn => lt', '2017-01-01T00:00:00.000Z' ],
        [ 'status => oneof', 'PENDING', 'PROCESSING' ]
    ],
    ...
});

But then we wouldn't see the use of the :or logical junction.

Logical Junctions

A logical junction is a filter term that is specified by a two-element array. The first element of the array is a string that describes how the nested filter terms are logically combined. The second element of the array is an array itself that consists of the filter terms that are combined in the junction.

The following junction types are supported:

  • :or, :any, :!none - Disjunction. The nested filter terms are combined using logical OR.

  • :!or, :!any, :none - Inverted disjunction. The nested filter terms are combined using logical OR and then negated using logical NOT.

  • :and, :all - Conjunction. The nested filter terms are combined using logical AND.

  • :!and, :!all - Inverted conjunction. The nested filter terms are combined using logical AND and then negated using logical NOT.

The top filter property in a query specification does not need to be an explicit logical junction if it is a conjunction (an :and).

Tests

Each test is a filter term that is defined as an array with one or more elements. The first element is called the predicate and is always a string that expresses what is tested and what is the test. If the test requires supplementary values to test against—the test parameters—the values follow the predicate as the rest of the filter term array elements.

The predicate is defined as:

Expr => Test

Where Expr is a value expression as in the Calculated Properties. This is the value that is tested. The Test is one of:

  • is, eq - Test if the value is equal to the single test parameter.

  • not, ne, !eq - Test if the value is not equal to the single test parameter.

  • min, ge, !lt - Test if the value is greater or equal to the single test parameter.

  • max, le, !gt - Test if the value is less or equal to the single test parameter.

  • gt - Test if the value is strictly greater than the single test parameter.

  • lt - Test if the value is strictly less than the single test parameter.

  • in, oneof, alt - Test if the value is equal to any of the test parameters. The test take any number of parameters, or it takes an array of values as a parameter.

  • !in, !oneof - Test if the value is not equal to any of the test parameters.

  • between - Test if the value is greater or equal to the first test parameter and less or equal to the second test parameter.

  • !between - Test if the value is less than the first test parameter or greater than the second test parameter.

  • contains - Test if the value contains the substring provided as the single test parameter. The substring is treated as case-sensitive.

  • containsi, substring - Same as contains, but case-insensitive.

  • !contains - Inversion of contains.

  • !containsi, !substring - Inversion of containsi.

  • starts - Test if the value starts with the string provided as the single test parameter. The string is treated as case-sensitive.

  • startsi, prefix - Same as starts, but case-insensitive.

  • !starts - Inversion of starts.

  • !startsi, !prefix - Inversion of startsi.

  • matches - Test if the value matches the regular expression provided as the single test parameter. The match is performed as case-sensitive.

  • matchesi, pattern, re - Same as matches, but case-insensitive.

  • !matches - Inversion of matches.

  • !matchesi, !pattern, !re - Inversion of matchesi.

  • empty - Test if there is no value (the value is absent, undefined or null). This test does not take any parameters.

  • !empty, present - Test if the value is not empty.

If the test is not provided at all (there is no => followed by the test in the predicate) and there are no test parameters, then !empty is assumed. If there are parameters, then eq is assumed.

The parameters to the tests can be provided in several different forms. The simplest way is to provide the value as is:

filter = [
    [ 'name', 'John' ],
    [ 'status => oneof', 'PENDING', 'PROCESSING' ],
    [ 'quantity => between', 10, 20 ],
    [ 'isAccepted', true ],
    [ 'placedOn => min', '2017-02-01T10:00:00.000Z' ],
    [ 'accountRef', 10 ],
    [ 'zip => present' ],
    [ 'length(concat(lastName, ", ", firstName)) => max', 30 ]
]

The type of the test parameter value must match the predicate's expression. The framework does not perform the conversions assuming that the application knows what value to provide for the specific test. Note, that the values for datetime fields are provided as ISO strings and values for reference properties are provided as the referred record ids, which can be either strings or numbers depending on the record id property value type.

Specifying test parameters to filters as values has the effect of "baking in" the parameters into the DBOs, which limits their reusability. It is possible to create a parameterized DBO if filter test parameters are specified not as values, but as filter parameters. To create a named filter parameter placeholder, the module's param() function is used:

const dbos = require('x2node-dbos');
 
...
 
filter = [
    [ 'name', dbos.param('name') ],
    [ 'status => oneof', dbos.param('statuses') ],
    [ 'accountRef', dbos.param('accountId') ]
];

The values for the filter parameters are provided when the DBO is executed:

resultPromise = fetchDBO.execute(connection, actor, {
    name: 'John',
    statuses: [ 'PENDING', 'PROCESSING' ],
    accountId: 10
});

And finally, sometimes it is necessary to test the predicate not against a value known to the application, but against another expression. This is made possible with the use of the module's expr() function:

filter = [
    [ 'accountRef => is', dbos.expr('ownerAccountRef') ]
    [ 'length(firstName) => gt', dbos.expr('length(lastName)') ]
];

Using property paths in dot notation allows constructing complex tests that involve values even from different related records.

Collection Tests

All tests in the paragraph above test scalar values. Another class of tests is collection property tests. The predicate is a path to a collection (array or map) property. No value transformation functions or any other value calculation expressions are involved as they do not apply to collections. The only tests allowed are empty and !empty, which is the default if no test is specified, and count and !count. The test as a whole tests if the specified collection has elements or is empty, or has specified number of elements, or not. For example, to select only those Account records that have some Order records associated with them, the filter could be:

filter = [
    [ 'orderRefs' ] // equivalent to [ 'orderRefs => !empty' ]
];

A collection test can have a nested filter the applies to the collection elements. For example, to select accounts that have pending orders placed before certain date, the following filter could be constructed:

filter = [
    [ 'orderRefs', [
        [ 'status', 'PENDING' ],
        [ 'placedOn => lt', '2017-10-12T22:00:00.000Z' ]
    ]]
];

To select account that have exactly two orders for a given date:

filter = [
    [ 'orderRefs => count', 2, [
        [ 'deliveryDate', '2017-10-12' ]
    ]]
];

Note, that the count (and !count) tests require an integer argument.

For the property paths, the nested collection filter assumes the context of the collection elements, so properties status and placedOn in the example above belong to the Order records (in the context of the fetched record type, the Account in our case, they would be orderRefs.status and orderRefs.placedOn and would be not allowed).

Note, that collection properties are not allowed as property path intermediate elements in regular tests. In collection tests, however, they are allowed as both the end property and as an intermediate property, which allows hopping over multiple collections.

Order Specification

The query specification object may include an order property to request a specific order, in which fetched records are returned in the records array of the fetch DBO result object. The order property is an array of strings, each element specifying oredering by a particular value expression. The order elements follow the pattern:

Expr => Dir

Where Expr is a value expression and Dir is either asc or desc. If not Dir is provided, asc is assumed by default. For example, we could order the Product records first by the length of the product name in descending order and then by the price:

order = [
    'length(name) => desc', 'price'
];

Note that only scalar properties are allowed to be used for sorting.

Range Specification

By default, all matched records are returned in the fetch DBO result object's records array. It is possible, however, to request only a certain window of the full result set. To do that, query specification object's range property can be used. The range property is a two-element array. The first element, an integer number, is the index of the first record to return, starting from zero. The second element, also an integer number, is the maximum number of records to return. For example, to request only first 5 matched records, the following range specification can be used:

range = [ 0, 5 ];

The next 5 records could be requested like this:

range = [ 5, 5 ];

And so on.

The range applies to records, not SQL query result set rows, even if the requested records contain collection properties with unknown number of elements.

Also note, that the range specification does not affect the super-aggregates, which always refect the whole collection of matched records regardless of the requested range. This allows, for example, to calculate the total number of pages during result set pagination and return correct totals in general regardless of the requested page.

Records Locking

When a fetch DBO is used as a part of a larger transaction (see Transactions) it sometimes necessary to ask the DBO to lock involved data in a certain mode until the end of the transaction. There are two types of locks that are specified by the query specification object's lock property: "shared" and "exclusive".

From the point of view of the DBO, there are two types of records that may be locked: the matched records of the main record type being fetched, and any referred records of other record types. When the lock property has value "shared", all records—both main record type records and used referred records, if any—are lock in such a way that protects them against modification by other transactions until the end of the transaction, in which the DBO is participating. When the lock is "exclusive", the main record type records are protected against reading by other transactions and any referred records are locked in the "shared" mode, which protects them against modification. The "exclusive" mode is used to fetch the data of records before making modifications to them so that the modifications are made based on the current record data and other transactions are not allowed to see the data until the modifications are completed.

Insert DBO

The insert DBO is used to create new records of a given record type. The DBO is created using DBO factory's buildInsert() method, which takes the record type name and the record template, which is the record data sans any properties that are automatically generated (such as record id, meta-info properties, other generated properties). See Creating Records in the opening usage section for an example.

Note that since insert DBO's take record data in during the DBO construction, their reusability is normally limited. Luckily, constructing an insert DBO is not a heavy operation.

To execute an insert DBO, its execute() method is called. The method takes two arguments:

  • txOrCon - Database connection (or transaction object, described later in this manual).

  • actor - Optional actor performing the operation. If not provided, the operation is anonymous. If the record type has meta-info property with role creationActor, anonymous executions of the DBO will not be allowed, since the DBO must fill in the field.

The execute() method returns a Promise that fulfills with the new record id. If an error happens, the promise is rejected with it.

Update DBO

The update DBO is used to modify existing records. The DBO is created using DBO factory's buildUpdate() method. The method takes three arguments:

  • The record type name.

  • The patch specification created using x2node-patches module.

  • A filter for the records to patch or a fetcher function that provides the DBO with the records to patch.

Note, that update DBO is not made for bulk record updates. The way it works is it selects all records that pass the filter with all their properties that are fetched by default (that is the filter was specified and not a fetcher function), loads them into memory, and then applies the patch and saves the changes back into the database for each record one by one. The main use-case for the update DBO is updating a single record selected by its id, or a small number of records. For bulk record updates custom SQL statements are used.

To execute the DBO, its execute() method is called. The method takes the following arguments:

  • txOrCon - Database connection (or transaction object, described later in this manual).

  • actor - Optional actor performing the operation. If not provided, the operation is anonymous. If the record type has meta-info property with role modificationActor, anonymous executions of the DBO will not be allowed, since the DBO must fill in the field.

  • recordValidators - Optional functions used to validate/normalize the records right before and after the patch is applied, but before the changes are saved into the database. The argument is an object with two optional functions: beforePatch and afterPatch. Each function, if provided, takes the record as its only argument. The record has all the properties fetched by default on it. Anything (including nothing) returned by the function that is not a rejected Promise allows the operation to proceed. If the function returns a Promise and it is rejected, the whole operation is immediately aborted and the promise returned by the DBO's execute() method is rejected with the same value. If multiple records are participating in the operation, changes saved for the records processed before the rejected one can be rolled back with the database transaction. Alternatively, instead of an object a function can be provided as the recordValidators argument, in which case the function is treated as the afterPatch function.

  • filterParams - If the DBO was created with a filter that utilizes named query parameters (dbos.param(paramName) function), this is the values for the parameters (object with keys for the parameter names and values for the corresponding parameter values). If fetcher function was used instead of a filter, this argument is still available to the fetcher function via the DBO execution context.

The returned by the execute() method promise, if not rejected as a result of an error, is fulfilled with an update operation result object. The result object includes:

  • records - An array with all matched records with all properties fetched by default and the patch applied.

  • updatedRecordIds - Array with ids of those records in the records array that were actually modified by the patch. May be an empty array if none.

  • testFailed - The supplied patch may have contained test operations (see JSON Patch specification). If so, those matched records, for which the test failed were not updated by the DBO. The test patch operation failure is not considered a DBO error. If it happens for a record, the record is left alone and the DBO continues on to the rest of the matched records. However, if a test failed for any of the matched records, the testFailed flag in the update operation result object will be set to true. Also note, that the records, for which test failed, may appear partially modified in the records array, even though those partial modifications were never flushed to the database by the DBO.

  • failedRecordIds - If testFailed is true, this is an array with ids of those records in the records array, for which the test patch operation failed.

Note, that if the update DBO participates in a larger transaction, it places an "exclusive" lock on the matched records.

Delete DBO

The delete DBO is used to delete existing records. The DBO deletes the records that pass the provided filter and also cascades the deletion onto all referred strongly dependent records. To create a DBO, DBO factory's buildDelete() method is used. It takes two parameters: the record type name and the optional (but rarely omitted) filter specification.

The DBO's execute() method takes three arguments:

  • txOrCon - Database connection (or transaction object, described later in this manual).

  • actor - Optional actor performing the operation.

  • filterParams - If the DBO was created with a filter that utilizes named query parameters (dbos.param(paramName) function), this is the values for the parameters (object with keys for the parameter names and values for the corresponding parameter values).

The Promise returned by the execute() method either rejects with an error, or is fulfilled with a result object, which, for every record type any records of which were actually deleted, has a property with the record type name as the property name and the number of deleted records as the value. Zeros are not included, so if no records matched the filter and were deleted, the promise is fulfilled with an empty object.

Transactions

Every DBO's execute() method takes a txOrCon argument. The argument can be a database driver-specific connection object. In that case, the execute() method automatically creates a transaction and executes all the statements it needs to execute to complete the operation in that transaction. If everything goes well, the DBO commits the transaction and the Promise returned by the execute() method is fulfilled with the operation result. If an error happens, the transaction is rolled back and the Promise is rejected with the error.

Here is an example with a MySQL connection pool:

const mysql = require('mysql');
 
const pool = mysql.createPool({
    connectionLimit: 5,
    host: 'localhost',
    database: 'mydb',
    user: 'mydbuser',
    password: 'mydbuserpassword'
});
 
const dbo = dboFactory.build...
 
pool.getConnection((err, connection) => {
 
    if (err)
        throw err;
 
    dbo.execute(connection, ...).then(
        result => {
            connection.release();
            console.log('success:', result);
        },
        err => {
            connection.release(err);
            console.error('error:', err);
        }
    );
});

Alternatively, especially if transaction involves executing multiple DBOs, the application can use a transaction factory provided by the DBO factory's createTxFactory() method. The methos takes database connections source (see Data Sources) as its only argument and returns a reusable instance of TxFactory class. The TxFactory instance exposes a executeTransaction() method, which takes a callback as an argument. The method creates and starts a transaction, calls the callback passing the transaction handler to it, and then either commits the transaction or rolls it back in case of an error. For example:

const mysql = require('mysql');
 
const pool = mysql.createPool({
    ...
});
 
// build our DBOs that will comprise the transaction
const dbo1 = dboFactory.build...
const dbo2 = dboFactory.build...
 
// create the standardized database connections source
const ds = dboFactory.adaptDataSource(pool);
 
// create the transaction factory
const txFactory = dboFactory.createTxFactory(ds);
 
// execute our DBOs in a transaction
txFactory.executeTransaction(tx => {
 
    return dbo1.execute(tx, ...).then(
        () => dbo2.execute(tx, ...));
});

The callback passed to executeTransaction() method may, and usually does, return a Promise with the transaction result. The executeTransaction() method itself also returns a Promise, which is fulfilled with the callback result, or is rejected if the callback returns a rejected promise or throws an error. The rejection of the promise returned by the executeTransaction() method indicates that the transaction was rolled back. Successful fulfillment of the promise indicates that the transaction was committed.

The callback passed to the executeTransaction() method receives a transaction handler, which is an instance of Transaction class and exposes the following properties and methods:

  • id - A string that uniquely identifies the transaction within the process.

  • startedOn - Timestamp, instance of Date, indicating when the transaction was started. (Available only after the promise returned by start() method successfully fulfills. See below.)

  • connection - The database connection object allocated from the data source provided to the transaction factory.

  • dbDriver - The database driver associated with the DBO factory used to create the transaction factory.

  • on(eventName, listener) - Register a transaction event listener. The eventName can be "begin", "commit" or "rollback". The "begin" event is not normally used by the applications as by the time the transaction callback is called the transaction is already started by the executeTransaction() method. The "commit" and "rollback" events, however, allow to have additional logic invoked right after the transaction commit or rollback. The listeners are invoked asynchronously using process.nextTick(). The values returned by the listeners are ignored. If a listener throws an error, the error is logged, but otherwise is ignored. The "rollback" event is fired regardless whether the rollback was successful or not. If it was not successful, the listener receives the rollback error as its argument.

In addition to the above, the transaction state management methods are also exposed, but are not normally used by the applications as the transaction state is automatically managed by the transaction factory's executeTransaction() method:

  • start([passThrough]) - Start the transaction. When a new transaction handler is created, the transaction is not initially started. The application must do it using the start() method before the transaction handler object can be used with the DBOs. The start() method returns a Promise which, if the transaction was successfully initiated, is fulfilled with the optional passThrough argument, or is rejected with an error if the transaction could not be started. After the transaction is started and before it is committed or rolled back it is considered active.

  • commit([passThrough]) - Commit an active transaction. The method returns a Promise, which fulfills with the optional passThrough argument if the transaction is successfully committed, or rejected with an error if the transaction could not be committed.

  • rollback([passThrough]) - Rollback an active transaction. The method returns a Promise, which fulfills with the optional passThrough argument if the transaction is successfully rolled back, or rejected with an error if the transaction could not be rolled back.

  • rollbackAndReject([passThrough]) - Same as rollback(), but the returned promise is always rejected (with the pass-through value) whether the transaction was rolled back successfully or not.

  • isActive() - Returns true if the transaction has been started but not yet committed or rolled back.

Record Collections Monitors

The DBO factory exposes a method called setRecordCollectionsMonitor(). It associates a record collections monitor, provided to it as its only argument, with the DBO factory. The monitor is a special service that gets notified whenever any DBO created by the factory makes changes to any record of any record type. This allows the monitor to keep track of the complete collections of records of any given record type as a whole. For an application that exposes a RESTful API this can be usedful for generating "ETag" values for the API calls that query record recollections (e.g. record list or search). It also allows locking transactions against the whole collections to provide reliable transaction isolation and avoid conflicts and deadlocks.

The monitor service implementation the following interface:

  • collectionsUpdated(ctx, recordTypeNames) - This monitor method is called by every DBO during the transaction that modifies record collections. The ctx argument is the DBO execution context object and the recordTypeNames is a Set of strings with names of record types being modified. If the method returns a Promise, the transaction is not committed until the promise is fulfilled. If the promise is rejected, the whole transaction gets rolled back. Any other type of returned value is ignored and the transaction is committed.

  • getCollectionsVersion(tx, recordTypeNames, [lockType]) - Queries the record collections versioning information. The tx argument is a transaction, the recordTypeNames is a Set of strings with names of record types to query. The optional lockType argument, which can be either "shared" or "exclusive", asks the monitor to lock the specified record collections until the end of the transaction. The method returns a Promise of the combined collections versioning information object, which includes two properties:

    • version - A number which is a sum of versions of all requested record collections. Initially, every record type gets a record collection with version 1. Whenever a new record is added or an existing record is modified or deleted, the collection version gets bumped up. The sum of multiple record collection versions produces a unique version for that particular combination of record collections.

    • modifiedOn - A Date, which reflects the modification timestamp of the records collection among the specified ones that was modified most recently. If no collection was ever modified, the date is going to be midnight of January 1st, 1970.

Data Sources

The DBO's module provides a unified interface for getting and releasing database connections for the database drivers it supports. The DBO factory exposes a adaptDataSource() method that takes a single argument, which can be:

  • A mysql connection object created with mysql.createConnection(). The resulting data source will be creating a new database connection each time a connection is requested and closing it each time it is released.

  • A mysql connection pool object created with mysql.createPool(). The resulting data source is a wrapper around the pool.

  • A pg client object created with new pg.Client(). The resulting data source will be creating a new database connection each time a connection is requested and closing it each time it is released.

  • A pg connection pool object created with new pg.Pool(). The resulting data source is a wrapper around the pool.

The returned data source object exposes the following methods:

  • getConnection() - Returns a Promise that is fulfilled with the database-driver specific connection object.

  • releaseConnection(connection, [err]) - Releases the specified connection previously acquired with getConnection(). The method returns immediately. Normally, if a connection pool is used and the optional second err argument is provided, indicating that the connection is being released as a result of an error, the data source will close the connection and eliminate it from the pool to avoid any lingering effects of the error associated with the database session.

So, the example above could be rewritten:

const mysql = require('mysql');
 
const pool = mysql.createPool({
    ...
});
const dataSource = dboFactory.adaptDataSource(pool);
 
const dbo = dboFactory.build...
 
dataSource.getConnection().then(
    connection => {
        dbo.execute(connection, ...).then(
            result => {
                dataSource.releaseConnection(connection);
                console.log('success:', result);
            },
            err => {
                dataSource.releaseConnection(connection);
                console.error('error:', err);
            }
        );
    },
    err => {
        console.error('could not acquire connection:', err);
    }
);

Database Drivers

Writing custom database drivers is an advanced topic that will be covered in the future versions of this manual.

Record Types Library Descriptors Extensions

As a record types library extension, the DBOs module adds some properties and methods to the various descriptors used by the x2node-records module. The description of these extensions will be provided in the future versions of this manual.

Versions

Current Tags

  • Version
    Downloads (Last 7 Days)
    • Tag
  • 1.9.1
    0
    • latest

Version History

Package Sidebar

Install

npm i x2node-dbos

Weekly Downloads

0

Version

1.9.1

License

MIT

Unpacked Size

516 kB

Total Files

33

Last publish

Collaborators

  • levahim