TypeScript icon, indicating that this package has built-in type declarations

    1.0.161 • Public • Published


    Library for calculate vector space model using cosine similarity.. for now i test this library using indonesian languange. so i didn't testing it with english data. but i was added english lemmatize document. but maybe i will change it to porter algorithm

    How to install

    npm install vector-space-model-similarity --save

    How to use

    first we import our function

    import { VSM } from 'vector-space-model-similarity

    next we define documents, it's an array

    const documents = ["rumah saya penuh makanan", "saya suka makan nasi", "nasi berawal dari beras"] // define our variable

    next we call VSM Class and define our object from VSM class

    const document = new VSM(documents); // define our object of VSM
    const idf = document.getIdfVectorized(); // return an array ob object, the key is tokenize our documents and the value is the 
    const query = new VSM(["sistem cerdas"], idf); // we define our object again, it's for query. and we pass our idf constant variable
    const cosine = Cosine(query.getPowWeightVectorized()[0], document.getPowWeightVectorized()); // calculating cosine similarity


    example of vsm calculating using excel. Image description


    import { VSM } from 'vector-space-model-similarity

    VSM is a class that extends from Tfidf class. VSM has one constructor and in the constructor it has two parameter. the first parameter is an important parameter and the second is optional. it's the parameter

    documents: string[], idfVector:any[] = []

    documents represented about our document, and idfVector is the idf from our vector of IDF number. idfVector is important if you want to search data from query. you must pass idfVector from the idf you got from documents before. to get idfVector use this function.

    getIdfVectorized will return this array. but not array of number, it's array of object. the key is the word and the value is the IDF value

    Image description

    getIdfVectorized() // <-- this is method from TFIDF Class.

    getWeightVectorized() will return idf value. and the return is an multidimension array

    Image description

    getWeightVectorized() // <-- return weight of documents

    getPowWeightVectorized() will return Exponent of IDF from the documents

    Image description

    getPowWeightVectorized() // <-- return weight of documents
    Methods Returned
    getIdfVectorized any[]
    getWeightVectorized any[][]
    getPowWeightVectorized any[][]


    when you was got documents and query vector idf you can use this function

    import { Cosine } from 'vector-space-model-similarity

    Cosine library has two parameters. the first paramter is a query, and the second is a documents

    queries:any[], documents:any[][] // <=== the parameters
    number[] // <=== the return

    after you get exponent of document idf from getPowWeightVectorized() you can use this function

    query is single dimension of array, and documents is a multi dimension of array. becasue getPowWeightVectorized() return multidimension array and the query parameter required singledimension of array you must pass the first index of your array. e.g :

    const document = new VSM([
        "sistem cerdas adalah kumpulan elemen",
        "adalah kumpulan elemen yang saling berinteraksi",
        "Sistem berinteraksi untuk mencapai tujuan"
    const idf = document.getIdfVectorized();
    const query = new VSM(["sistem cerdas"], idf);
    const cosine = Cosine(query.getPowWeightVectorized()[0], document.getPowWeightVectorized()); // output : [ 4.457087767265072, 0, 0.4853443577859814 ]


    all function you can import from this package

    Methods Returned Descriptions
    Tokenize string[] To get token from the string. eg : "The sun and the moon" => ["the", "sun", "and", "the", "moon"]
    Stemming string currently I'm using lemmatization algorithm. and maybe I will change to porter or other stemming or lemma algorithm. it's a function to get base word. and support english or indonesian. eg : memakan => makan, berlari => lari
    stopword string[] to remove not important word. eg : ["saya", "suka", "dia"] => ["suka"]
    stopword string to remove not important word. eg : ["saya", "suka", "dia"] => ["suka"]


    npm i vector-space-model-similarity

    DownloadsWeekly Downloads






    Unpacked Size

    6.1 MB

    Total Files


    Last publish


    • nurcahyaari