Handles text translation using pretrained models from Hugging Face's Transformers library
- Loads or downloads models based on provided IDs.
- Translates input text using loaded models and tokenizers.
- Supports command-line arguments for model ID, input text, and storage directory.
Manages communication with translate.py
from Node.js:
- Locates Python executable dynamically.
- Installs Python dependencies from
requirements.txt
. - Uses
config.json
for configuration andmodels_with_languages.json
for model selection. - Spawns Python subprocesses for translation tasks.
Metadata about available translation models:
- Lists model IDs, source and target languages.
Refers to NLP research at the University of Helsinki, known for AI leadership. It focuses on advancements in language processing.
-
Setup:
- Ensure Python 3.x and Node.js are installed.
- Run
npm install transtexa
-
Translation:
- Use
TranslationModel
methods (translateText
,getSupportedLanguages
) in Node.js.
- Use
-
Customization:
- Modify
models_with_languages.json
to adjust models and languages. - Configure
config.json
for Python paths.
- Modify
import TranslationModel from './index.js';
const translator = new TranslationModel();
translator.translateText('zh', 'en', '你好吗?').then(translated => {
console.log(translated); // Outputs: "How are you?"
}).catch(err => {
console.error('Translation error:', err);
});
import Telegraf from 'telegraf';
import TranslationModel from './index.js';
const bot = new Telegraf('YOUR_TELEGRAM_BOT_TOKEN');
const translator = new TranslationModel();
bot.on('text', async (ctx) => {
const sourceLanguage = 'en'; // Assuming English as input language
const targetLanguage = 'fr'; // Assuming French as output language
const textToTranslate = ctx.message.text;
try {
const translatedText = await translator.translateText(sourceLanguage, targetLanguage, textToTranslate);
ctx.reply(translatedText);
} catch (error) {
console.error('Translation error:', error);
ctx.reply('Translation failed. Please try again later.');
}
});
bot.launch();
import express from 'express';
import TranslationModel from './index.js';
const app = express();
const port = 3000;
const translator = new TranslationModel();
app.use(express.json());
app.post('/translate', async (req, res) => {
const { sourceLanguage, targetLanguage, text } = req.body;
try {
const translatedText = await translator.translateText(sourceLanguage, targetLanguage, text);
res.json({ translatedText });
} catch (error) {
console.error('Translation error:', error);
res.status(500).json({ error: 'Translation failed. Please try again later.' });
}
});
app.listen(port, () => {
console.log(`Server is running on http://localhost:${port}`);
});