TypeScript SDK for the Sympraxi AI prompt management tool.
npm install sympraxi-sdk
or
yarn add sympraxi-sdk
The SDK supports two authentication methods:
import { SympraxiClient } from 'sympraxi-sdk';
// Method 1: Using API token (recommended)
const client = new SympraxiClient({
apiToken: 'sym-xxxxxxxxxxxxxxxx',
});
// Method 2: Using API key (legacy)
const client = new SympraxiClient({
apiKey: 'your-api-key',
});
import { SympraxiClient } from 'sympraxi-sdk';
const client = new SympraxiClient({
apiToken: 'sym-xxxxxxxxxxxxxxxx',
});
// Get a prompt using a reference in the format 'projectName:nodeName:nodeUUID'
async function getMyPrompt() {
try {
const response = await client.getPrompt('myProject:myNode:d5dca613-79bd-41f9-a148-23cccb38b6bb');
// Access the prompt text
console.log(response.prompt); // "I am a helpful AI agent."
// You can also access any other properties returned by the API
console.log(response);
return response;
} catch (error) {
console.error('Error fetching prompt:', error);
}
}
The SDK can fetch and manage the entire graph of nodes for a project:
import { SympraxiClient } from 'sympraxi-sdk';
const client = new SympraxiClient({
apiToken: 'sym-xxxxxxxxxxxxxxxx',
});
async function buildAgentConfiguration() {
// Fetch all nodes for a project
const projectId = 'a7fc8904-79e9-4366-8dc7-4740dc51694b';
const nodeMap = await client.getNodeMap(projectId);
// Access nodes by ID
const supervisorNode = nodeMap['0c9c2e7f-b1ab-48be-8a1c-48f427aafaa2'];
if (!supervisorNode) return;
// Get the latest prompt version
const supervisorPrompt = client.getLatestPrompt(supervisorNode);
// Find child nodes (agents/tools)
const childNodeIds = supervisorNode.outgoingConnections.map(conn => conn.targetNode);
const childNodes = childNodeIds.map(id => nodeMap[id]).filter(Boolean);
// Extract node information for agent configuration
const agentConfigs = childNodes.map(node => ({
id: node.id,
name: node.name,
type: node.type,
prompt: client.getLatestPrompt(node),
// Other configuration details...
}));
return {
supervisor: {
id: supervisorNode.id,
name: supervisorNode.name,
prompt: supervisorPrompt,
},
agents: agentConfigs,
};
}
The SDK can automatically convert Sympraxi node configurations into runnable LangGraph agents:
import { SympraxiClient } from 'sympraxi-sdk';
import { createReactAgent } from '@langchain/langgraph/prebuilt';
import { createSupervisor } from '@langchain/langgraph-supervisor';
import { ChatOpenAI } from '@langchain/openai';
import { Calculator } from '@langchain/community/tools/calculator';
async function buildLangGraphWorkflow() {
const client = new SympraxiClient({
apiToken: 'sym-xxxxxxxxxxxxxxxx',
});
// Initialize your LLM
const llm = new ChatOpenAI({modelName: 'gpt-4'});
// Configure project and tools
const projectId = 'a7fc8904-79e9-4366-8dc7-4740dc51694b';
const rootSupervisorId = '0c9c2e7f-b1ab-48be-8a1c-48f427aafaa2';
// Map tool implementations to node IDs
const toolImplementations = {
'1fa89c68-bc47-448b-a9c7-1f9cc3893c26': new Calculator(),
// Add more tools as needed
};
// Provide factory functions for agent creation
const agentFactory = {
createReactAgent,
createSupervisor,
};
// Build the complete LangGraph workflow
const workflow = await client.buildLangGraphWorkflow(
projectId,
rootSupervisorId,
{ model: llm },
toolImplementations,
agentFactory
);
// Run the workflow
const result = await compiledWorkflow.invoke(
{ messages: [{ content: "Hello, I need financial advice" }] },
{ configurable: { thread_id: `thread-${Date.now()}` } }
);
return result;
}
The SDK supports variable substitution in prompts. You can define variables in your prompts using the {{ $variableName }}
syntax, and then provide values for these variables when building your workflow:
// In Sympraxi, create prompts with variables:
// "Hello, my name is {{ $agentName }}. I'll help you with {{ $topic }}."
// When using the SDK, pass variables when building the workflow:
const workflow = await client.buildLangGraphWorkflow(
projectId,
rootSupervisorId,
{ model: llm },
toolImplementations,
agentFactory,
{
// Variables to substitute in all prompts
agentName: "Jane",
topic: "financial planning",
userAge: 42,
isExistingCustomer: true
}
);
// Variables can also be used with the getLatestPrompt method:
const prompt = client.getLatestPrompt(node, {
agentName: "Jane",
customGreeting: "Welcome back!"
});
Variables support string, number, and boolean values, which are converted to strings during substitution. If a variable is used in a prompt but not provided in the variables object, it will remain unchanged in the final prompt.
The LangGraph integration is designed to be extensible to other agent frameworks as well. You can implement custom factory functions to adapt Sympraxi configurations to different frameworks.
The SDK provides structured types for working with Sympraxi's graph-based prompt management:
-
Node
: Represents a node in the graph (agent, supervisor, or tool) -
NodeVersion
: Version history for a node's prompt -
Connection
: Represents a link between nodes
interface Node {
id: string;
name: string;
type: 'agent' | 'supervisor' | 'tool';
versions: NodeVersion[];
outgoingConnections: Connection[];
incomingConnections: Connection[];
// ...other properties
}
The SDK throws descriptive errors for various error conditions:
- Invalid prompt reference format
- Invalid UUID format
- API errors (with status code and response)
- Network errors
This package includes Jest-based tests. Run them with:
npm test
Build the package with:
npm run build
MIT