

skip to:contentpackage searchsign in
❤Napping Peanut Monsters	Pro
	Teams
	Pricing
	Documentation

npm

Search

Sign UpSign In

 react-pdf

7.7.1 • Public • Published 16 days ago
	 Readme
	Code Beta
	9 Dependencies
	745 Dependents
	138 Versions

React-PDF

Display PDFs in your React app as easily as if they were images.

Lost?

This package is used to display existing PDFs. If you wish to create PDFs using React, you may be looking for @react-pdf/renderer.

tl;dr

	Install by executing npm install react-pdf or yarn add react-pdf.
	Import by adding import { Document } from 'react-pdf'.
	Use by adding <Document file="..." />. file can be a URL, base64 content, Uint8Array, and more.
	Put <Page /> components inside <Document /> to render pages.

Demo

A minimal demo page can be found in sample directory.

Online demo is also available!

Before you continue

React-PDF is under constant development. This documentation is written for React-PDF 7.x branch. If you want to see documentation for other versions of React-PDF, use dropdown on top of GitHub page to switch to an appropriate tag. Here are quick links to the newest docs from each branch:

	v6.x
	v5.x
	v4.x
	v3.x
	v2.x
	v1.x

Getting started

Compatibility

Browser support

React-PDF supports all modern browsers. It is tested with the latest versions of Chrome, Edge, Safari, Firefox, and Opera.

The following browsers are supported out of the box in React-PDF v7:

	Chrome ≥92
	Edge ≥92
	Safari ≥15.4
	Firefox ≥90

You may extend the list of supported browsers by providing additional polyfills (e.g. for Array.prototype.at or Promise.allSettled) and either configuring your bundler to transpile pdfjs-dist and using legacy PDF.js worker.

If you need to support older browsers, you will need to use React-PDF v6 or v5.

If you need to support Internet Explorer 11, you will need to use React-PDF v4.

React

To use the latest version of React-PDF, your project needs to use React 16.8 or later.

If you use an older version of React, please refer to the table below to a find suitable React-PDF version.

	React version	Newest compatible React-PDF version
	≥16.8	latest
	≥16.3	5.x
	≥15.5	4.x

Preact

React-PDF may be used with Preact.

Installation

Add React-PDF to your project by executing npm install react-pdf or yarn add react-pdf.

Next.js

If you use Next.js, you may need to add the following to your next.config.js:

module.exports = {
+ webpack: (config) => {
+ config.resolve.alias.canvas = false;

+ return config;
+ },
}

Configure PDF.js worker

For React-PDF to work, PDF.js worker needs to be provided. You have several options.

Import worker (recommended)

For most cases, the following example will work:

import { pdfjs } from 'react-pdf';

pdfjs.GlobalWorkerOptions.workerSrc = new URL(
 'pdfjs-dist/build/pdf.worker.min.js',
 import.meta.url,
).toString();

Note
In Next.js:

	Using App Router, make sure to add 'use client'; to the top of the file.
	Using Pages Router, make sure to disable SSR when importing the component you're using this code in.

Note
pnpm requires an .npmrc file with public-hoist-pattern[]=pdfjs-dist for this to work.

See more examples
Parcel 2

For Parcel 2, you need to use a slightly different code:

 pdfjs.GlobalWorkerOptions.workerSrc = new URL(
- 'pdfjs-dist/build/pdf.worker.min.js',
+ 'npm:pdfjs-dist/build/pdf.worker.min.js',
 import.meta.url,
).toString();

Copy worker to public directory

You will have to make sure on your own that pdf.worker.js file from pdfjs-dist/build is copied to your project's output folder.

For example, you could use a custom script like:

import path from 'node:path';
import fs from 'node:fs';

const pdfjsDistPath = path.dirname(require.resolve('pdfjs-dist/package.json'));
const pdfWorkerPath = path.join(pdfjsDistPath, 'build', 'pdf.worker.js');

fs.copyFileSync(pdfWorkerPath, './dist/pdf.worker.js');

Use external CDN

import { pdfjs } from 'react-pdf';

pdfjs.GlobalWorkerOptions.workerSrc = `//unpkg.com/pdfjs-dist@${pdfjs.version}/build/pdf.worker.min.js`;

Legacy PDF.js worker

If you need to support older browsers, you may use legacy PDF.js worker. To do so, follow the instructions above, but replace /build/ with legacy/build/ in PDF.js worker import path, for example:

 pdfjs.GlobalWorkerOptions.workerSrc = new URL(
- 'pdfjs-dist/build/pdf.worker.min.js',
+ 'pdfjs-dist/legacy/build/pdf.worker.min.js',
 import.meta.url,
).toString();

or:

-pdfjs.GlobalWorkerOptions.workerSrc = `//unpkg.com/pdfjs-dist@${pdfjs.version}/build/pdf.worker.min.js`;
+pdfjs.GlobalWorkerOptions.workerSrc = `//unpkg.com/pdfjs-dist@${pdfjs.version}/legacy/build/pdf.worker.min.js`;

Usage

Here's an example of basic usage:

import { useState } from 'react';
import { Document, Page } from 'react-pdf';

function MyApp() {
 const [numPages, setNumPages] = useState<number>();
 const [pageNumber, setPageNumber] = useState<number>(1);

 function onDocumentLoadSuccess({ numPages }: { numPages: number }): void {
 setNumPages(numPages);
 }

 return (
 <div>
 <Document file="somefile.pdf" onLoadSuccess={onDocumentLoadSuccess}>
 <Page pageNumber={pageNumber} />
 </Document>
 <p>
 Page {pageNumber} of {numPages}
 </p>
 </div>
);
}

Check the sample directory in this repository for a full working example. For more examples and more advanced use cases, check Recipes in React-PDF Wiki.

Support for annotations

If you want to use annotations (e.g. links) in PDFs rendered by React-PDF, then you would need to include stylesheet necessary for annotations to be correctly displayed like so:

import 'react-pdf/dist/Page/AnnotationLayer.css';

Support for text layer

If you want to use text layer in PDFs rendered by React-PDF, then you would need to include stylesheet necessary for text layer to be correctly displayed like so:

import 'react-pdf/dist/Page/TextLayer.css';

Support for non-latin characters

If you want to ensure that PDFs with non-latin characters will render perfectly, or you have encountered the following warning:

Warning: The CMap "baseUrl" parameter must be specified, ensure that the "cMapUrl" and "cMapPacked" API parameters are provided.

then you would also need to include cMaps in your build and tell React-PDF where they are.

Copying cMaps

First, you need to copy cMaps from pdfjs-dist (React-PDF's dependency - it should be in your node_modules if you have React-PDF installed). cMaps are located in pdfjs-dist/cmaps.

Vite

Add vite-plugin-static-copy by executing npm install vite-plugin-static-copy --save-dev or yarn add vite-plugin-static-copy --dev and add the following to your Vite config:

+import path from 'node:path';
+import { createRequire } from 'node:module';

-import { defineConfig } from 'vite';
+import { defineConfig, normalizePath } from 'vite';
+import { viteStaticCopy } from 'vite-plugin-static-copy';

+const require = createRequire(import.meta.url);
+const cMapsDir = normalizePath(
+ path.join(path.dirname(require.resolve('pdfjs-dist/package.json')), 'cmaps')
+);

export default defineConfig({
 plugins: [
+ viteStaticCopy({
+ targets: [
+ {
+ src: cMapsDir,
+ dest: '',
+ },
+],
+ }),
]
});

Webpack

Add copy-webpack-plugin by executing npm install copy-webpack-plugin --save-dev or yarn add copy-webpack-plugin --dev and add the following to your Webpack config:

+import path from 'node:path';
+import CopyWebpackPlugin from 'copy-webpack-plugin';

+const cMapsDir = path.join(path.dirname(require.resolve('pdfjs-dist/package.json')), 'cmaps');

module.exports = {
 plugins: [
+ new CopyWebpackPlugin({
+ patterns: [
+ {
+ from: cMapsDir,
+ to: 'cmaps/'
+ },
+],
+ }),
],
};

Other tools

If you use other bundlers, you will have to make sure on your own that cMaps are copied to your project's output folder.

For example, you could use a custom script like:

import path from 'node:path';
import fs from 'node:fs';

const cMapsDir = path.join(path.dirname(require.resolve('pdfjs-dist/package.json')), 'cmaps');

fs.cpSync(cMapsDir, 'dist/cmaps/', { recursive: true });

Setting up React-PDF

Now that you have cMaps in your build, pass required options to Document component by using options prop, like so:

// Outside of React component
const options = {
 cMapUrl: '/cmaps/',
};

// Inside of React component
<Document options={options} />;

Note
Make sure to define options object outside of your React component, and use useMemo if you can't.

Alternatively, you could use cMaps from external CDN:

// Outside of React component
import { pdfjs } from 'react-pdf';

const options = {
 cMapUrl: `https://unpkg.com/pdfjs-dist@${pdfjs.version}/cmaps/`,
};

// Inside of React component
<Document options={options} />;

Support for standard fonts

If you want to support PDFs using standard fonts (deprecated in PDF 1.5, but still around), ot you have encountered the following warning:

The standard font "baseUrl" parameter must be specified, ensure that the "standardFontDataUrl" API parameter is provided.

then you would also need to include standard fonts in your build and tell React-PDF where they are.

Copying fonts

First, you need to copy standard fonts from pdfjs-dist (React-PDF's dependency - it should be in your node_modules if you have React-PDF installed). Standard fonts are located in pdfjs-dist/standard_fonts.

Vite

Add vite-plugin-static-copy by executing npm install vite-plugin-static-copy --save-dev or yarn add vite-plugin-static-copy --dev and add the following to your Vite config:

+import path from 'node:path';
+import { createRequire } from 'node:module';

-import { defineConfig } from 'vite';
+import { defineConfig, normalizePath } from 'vite';
+import { viteStaticCopy } from 'vite-plugin-static-copy';

+const require = createRequire(import.meta.url);
+const standardFontsDir = normalizePath(
+ path.join(path.dirname(require.resolve('pdfjs-dist/package.json')), 'standard_fonts')
+);

export default defineConfig({
 plugins: [
+ viteStaticCopy({
+ targets: [
+ {
+ src: standardFontsDir,
+ dest: '',
+ },
+],
+ }),
]
});

Webpack

Add copy-webpack-plugin by executing npm install copy-webpack-plugin --save-dev or yarn add copy-webpack-plugin --dev and add the following to your Webpack config:

+import path from 'node:path';
+import CopyWebpackPlugin from 'copy-webpack-plugin';

+const standardFontsDir = path.join(path.dirname(require.resolve('pdfjs-dist/package.json')), 'standard_fonts');

module.exports = {
 plugins: [
+ new CopyWebpackPlugin({
+ patterns: [
+ {
+ from: standardFontsDir,
+ to: 'standard_fonts/'
+ },
+],
+ }),
],
};

Other tools

If you use other bundlers, you will have to make sure on your own that standard fonts are copied to your project's output folder.

For example, you could use a custom script like:

import path from 'node:path';
import fs from 'node:fs';

const standardFontsDir = path.join(
 path.dirname(require.resolve('pdfjs-dist/package.json')),
 'standard_fonts',
);

fs.cpSync(standardFontsDir, 'dist/standard_fonts/', { recursive: true });

Setting up React-PDF

Now that you have standard fonts in your build, pass required options to Document component by using options prop, like so:

// Outside of React component
const options = {
 standardFontDataUrl: '/standard_fonts/',
};

// Inside of React component
<Document options={options} />;

Note
Make sure to define options object outside of your React component, and use useMemo if you can't.

Alternatively, you could use standard fonts from external CDN:

// Outside of React component
import { pdfjs } from 'react-pdf';

const options = {
 standardFontDataUrl: `https://unpkg.com/pdfjs-dist@${pdfjs.version}/standard_fonts`,
};

// Inside of React component
<Document options={options} />;

User guide

Document

Loads a document passed using file prop.

Props

	Prop name	Description	Default value	Example values
	className	Class name(s) that will be added to rendered element along with the default react-pdf__Document.	n/a		String:
"custom-class-name-1 custom-class-name-2"

	Array of strings:
["custom-class-name-1", "custom-class-name-2"]

	error	What the component should display in case of an error.	"Failed to load PDF file."		String:
"An error occurred!"

	React element:
<p>An error occurred!</p>

	Function:
this.renderError

	externalLinkRel	Link rel for links rendered in annotations.	"noopener noreferrer nofollow"	One of valid values for rel attribute.	"noopener"
	"noreferrer"
	"nofollow"
	"noopener noreferrer"

	externalLinkTarget	Link target for external links rendered in annotations.	unset, which means that default behavior will be used	One of valid values for target attribute.	"_self"
	"_blank"
	"_parent"
	"_top"

	file	What PDF should be displayed.
Its value can be an URL, a file (imported using import … from … or from file input form element), or an object with parameters (url - URL; data - data, preferably Uint8Array; range - PDFDataRangeTransport.
Warning: Since equality check (===) is used to determine if file object has changed, it must be memoized by setting it in component's state, useMemo or other similar technique.	n/a		URL:
"https://example.com/sample.pdf"

	File:
import importedPdf from '../static/sample.pdf' and then
sample

	Parameter object:
{ url: 'https://example.com/sample.pdf' }

	imageResourcesPath	The path used to prefix the src attributes of annotation SVGs.	n/a (pdf.js will fallback to an empty string)	"/public/images/"
	inputRef	A prop that behaves like ref, but it's passed to main <div> rendered by <Document> component.	n/a		Function:
(ref) => { this.myDocument = ref; }

	Ref created using createRef:
this.ref = createRef();
…
inputRef={this.ref}

	Ref created using useRef:
const ref = useRef();
…
inputRef={ref}

	loading	What the component should display while loading.	"Loading PDF…"		String:
"Please wait!"

	React element:
<p>Please wait!</p>

	Function:
this.renderLoader

	noData	What the component should display in case of no data.	"No PDF file specified."		String:
"Please select a file."

	React element:
<p>Please select a file.</p>

	Function:
this.renderNoData

	onItemClick	Function called when an outline item or a thumbnail has been clicked. Usually, you would like to use this callback to move the user wherever they requested to.	n/a	({ dest, pageIndex, pageNumber }) => alert('Clicked an item from page ' + pageNumber + '!')
	onLoadError	Function called in case of an error while loading a document.	n/a	(error) => alert('Error while loading document! ' + error.message)
	onLoadProgress	Function called, potentially multiple times, as the loading progresses.	n/a	({ loaded, total }) => alert('Loading a document: ' + (loaded / total) * 100 + '%')
	onLoadSuccess	Function called when the document is successfully loaded.	n/a	(pdf) => alert('Loaded a file with ' + pdf.numPages + ' pages!')
	onPassword	Function called when a password-protected PDF is loaded.	Function that prompts the user for password.	(callback) => callback('s3cr3t_p4ssw0rd')
	onSourceError	Function called in case of an error while retrieving document source from file prop.	n/a	(error) => alert('Error while retrieving document source! ' + error.message)
	onSourceSuccess	Function called when document source is successfully retrieved from file prop.	n/a	() => alert('Document source retrieved!')
	options	An object in which additional parameters to be passed to PDF.js can be defined. Most notably:	
cMapUrl;
	
httpHeaders - custom request headers, e.g. for authorization);
	
withCredentials - a boolean to indicate whether or not to include cookies in the request (defaults to false)

For a full list of possible parameters, check PDF.js documentation on DocumentInitParameters. Note: Make sure to define options object outside of your React component, and use useMemo if you can't.	n/a	{ cMapUrl: '/cmaps/' }
	renderMode	Rendering mode of the document. Can be "canvas", "custom", "none" or "svg". If set to "custom", customRenderer must also be provided.
Warning: SVG render mode is deprecated and will be removed in the future.	"canvas"	"custom"
	rotate	Rotation of the document in degrees. If provided, will change rotation globally, even for the pages which were given rotate prop of their own. 90 = rotated to the right, 180 = upside down, 270 = rotated to the left.	n/a	90

Page

Displays a page. Should be placed inside <Document />. Alternatively, it can have pdf prop passed, which can be obtained from <Document />'s onLoadSuccess callback function, however some advanced functions like rendering annotations and linking between pages inside a document may not be working correctly.

Props

	Prop name	Description	Default value	Example values
	canvasBackground	Canvas background color. Any valid canvas.fillStyle can be used. If you set renderMode to "svg" this prop will be ignored.	n/a	"transparent"
	canvasRef	A prop that behaves like ref, but it's passed to <canvas> rendered by <PageCanvas> component. If you set renderMode to "svg" this prop will be ignored.	n/a		Function:
(ref) => { this.myCanvas = ref; }

	Ref created using createRef:
this.ref = createRef();
…
inputRef={this.ref}

	Ref created using useRef:
const ref = useRef();
…
inputRef={ref}

	className	Class name(s) that will be added to rendered element along with the default react-pdf__Page.	n/a		String:
"custom-class-name-1 custom-class-name-2"

	Array of strings:
["custom-class-name-1", "custom-class-name-2"]

	customRenderer	Function that customizes how a page is rendered. You must set renderMode to "custom" to use this prop.	n/a	MyCustomRenderer
	customTextRenderer	Function that customizes how a text layer is rendered.	n/a	({ str, itemIndex }) => str.replace(/ipsum/g, value => `<mark>${value}</mark>`)
	devicePixelRatio	The ratio between physical pixels and device-independent pixels (DIPs) on the current device.	window.devicePixelRatio	1
	error	What the component should display in case of an error.	"Failed to load the page."		String:
"An error occurred!"

	React element:
<p>An error occurred!</p>

	Function:
this.renderError

	height	Page height. If neither height nor width are defined, page will be rendered at the size defined in PDF. If you define width and height at the same time, height will be ignored. If you define height and scale at the same time, the height will be multiplied by a given factor.	Page's default height	300
	imageResourcesPath	The path used to prefix the src attributes of annotation SVGs.	n/a (pdf.js will fallback to an empty string)	"/public/images/"
	inputRef	A prop that behaves like ref, but it's passed to main <div> rendered by <Page> component.	n/a		Function:
(ref) => { this.myPage = ref; }

	Ref created using createRef:
this.ref = createRef();
…
inputRef={this.ref}

	Ref created using useRef:
const ref = useRef();
…
inputRef={ref}

	loading	What the component should display while loading.	"Loading page…"		String:
"Please wait!"

	React element:
<p>Please wait!</p>

	Function:
this.renderLoader

	noData	What the component should display in case of no data.	"No page specified."		String:
"Please select a page."

	React element:
<p>Please select a page.</p>

	Function:
this.renderNoData

	onGetAnnotationsError	Function called in case of an error while loading annotations.	n/a	(error) => alert('Error while loading annotations! ' + error.message)
	onGetAnnotationsSuccess	Function called when annotations are successfully loaded.	n/a	(annotations) => alert('Now displaying ' + annotations.length + ' annotations!')
	onGetStructTreeError	Function called in case of an error while loading structure tree.	n/a	(error) => alert('Error while loading structure tree! ' + error.message)
	onGetStructTreeSuccess	Function called when structure tree is successfully loaded.	n/a	(structTree) => alert(JSON.stringify(structTree))
	onGetTextError	Function called in case of an error while loading text layer items.	n/a	(error) => alert('Error while loading text layer items! ' + error.message)
	onGetTextSuccess	Function called when text layer items are successfully loaded.	n/a	({ items, styles }) => alert('Now displaying ' + items.length + ' text layer items!')
	onLoadError	Function called in case of an error while loading the page.	n/a	(error) => alert('Error while loading page! ' + error.message)
	onLoadSuccess	Function called when the page is successfully loaded.	n/a	(page) => alert('Now displaying a page number ' + page.pageNumber + '!')
	onRenderAnnotationLayerError	Function called in case of an error while rendering the annotation layer.	n/a	(error) => alert('Error while loading annotation layer! ' + error.message)
	onRenderAnnotationLayerSuccess	Function called when annotations are successfully rendered on the screen.	n/a	() => alert('Rendered the annotation layer!')
	onRenderError	Function called in case of an error while rendering the page.	n/a	(error) => alert('Error while loading page! ' + error.message)
	onRenderSuccess	Function called when the page is successfully rendered on the screen.	n/a	() => alert('Rendered the page!')
	onRenderTextLayerError	Function called in case of an error while rendering the text layer.	n/a	(error) => alert('Error while rendering text layer! ' + error.message)
	onRenderTextLayerSuccess	Function called when the text layer is successfully rendered on the screen.	n/a	() => alert('Rendered the text layer!')
	pageIndex	Which page from PDF file should be displayed, by page index. Ignored if pageNumber prop is provided.	0	1
	pageNumber	Which page from PDF file should be displayed, by page number. If provided, pageIndex prop will be ignored.	1	2
	pdf	pdf object obtained from <Document />'s onLoadSuccess callback function.	(automatically obtained from parent <Document />)	pdf
	renderAnnotationLayer	Whether annotations (e.g. links) should be rendered.	true	false
	renderForms	Whether forms should be rendered. renderAnnotationLayer prop must be set to true.	false	true
	renderMode	Rendering mode of the document. Can be "canvas", "custom", "none" or "svg". If set to "custom", customRenderer must also be provided.
Warning: SVG render mode is deprecated and will be removed in the future.	"canvas"	"custom"
	renderTextLayer	Whether a text layer should be rendered.	true	false
	rotate	Rotation of the page in degrees. 90 = rotated to the right, 180 = upside down, 270 = rotated to the left.	Page's default setting, usually 0
	90
	scale	Page scale.	1	0.5
	width	Page width. If neither height nor width are defined, page will be rendered at the size defined in PDF. If you define width and height at the same time, height will be ignored. If you define width and scale at the same time, the width will be multiplied by a given factor.	Page's default width	300

Outline

Displays an outline (table of contents). Should be placed inside <Document />. Alternatively, it can have pdf prop passed, which can be obtained from <Document />'s onLoadSuccess callback function.

Props

	Prop name	Description	Default value	Example values
	className	Class name(s) that will be added to rendered element along with the default react-pdf__Outline.	n/a		String:
"custom-class-name-1 custom-class-name-2"

	Array of strings:
["custom-class-name-1", "custom-class-name-2"]

	inputRef	A prop that behaves like ref, but it's passed to main <div> rendered by <Outline> component.	n/a		Function:
(ref) => { this.myOutline = ref; }

	Ref created using createRef:
this.ref = createRef();
…
inputRef={this.ref}

	Ref created using useRef:
const ref = useRef();
…
inputRef={ref}

	onItemClick	Function called when an outline item has been clicked. Usually, you would like to use this callback to move the user wherever they requested to.	n/a	({ dest, pageIndex, pageNumber }) => alert('Clicked an item from page ' + pageNumber + '!')
	onLoadError	Function called in case of an error while retrieving the outline.	n/a	(error) => alert('Error while retrieving the outline! ' + error.message)
	onLoadSuccess	Function called when the outline is successfully retrieved.	n/a	(outline) => alert('The outline has been successfully retrieved.')

Thumbnail

Displays a thumbnail of a page. Does not render the annotation layer or the text layer. Does not register itself as a link target, so the user will not be scrolled to a Thumbnail component when clicked on an internal link (e.g. in Table of Contents). When clicked, attempts to navigate to the page clicked (similarly to a link in Outline). Should be placed inside <Document />. Alternatively, it can have pdf prop passed, which can be obtained from <Document />'s onLoadSuccess callback function.

Props

Props are the same as in <Page /> component, but certain annotation layer and text layer-related props are not available:

	customTextRenderer
	onGetAnnotationsError
	onGetAnnotationsSuccess
	onGetTextError
	onGetTextSuccess
	onRenderAnnotationLayerError
	onRenderAnnotationLayerSuccess
	onRenderTextLayerError
	onRenderTextLayerSuccess
	renderAnnotationLayer
	renderForms
	renderTextLayer

On top of that, additional props are available:

	Prop name	Description	Default value	Example values
	className	Class name(s) that will be added to rendered element along with the default react-pdf__Thumbnail.	n/a		String:
"custom-class-name-1 custom-class-name-2"

	Array of strings:
["custom-class-name-1", "custom-class-name-2"]

	onItemClick	Function called when a thumbnail has been clicked. Usually, you would like to use this callback to move the user wherever they requested to.	n/a	({ dest, pageIndex, pageNumber }) => alert('Clicked an item from page ' + pageNumber + '!')

Useful links

	React-PDF Wiki

License

The MIT License.

Author

	

 	
 Wojciech Maj

Thank you

This project wouldn't be possible without the awesome work of Niklas Närhinen who created its original version and without Mozilla, author of pdf.js. Thank you!

Sponsors

Thank you to all our sponsors! Become a sponsor and get your image on our README on GitHub.

Backers

Thank you to all our backers! Become a backer and get your image on our README on GitHub.

Top Contributors

Thank you to all our contributors that helped on this project!

Readme
Keywords
	pdf
	pdf-viewer
	react

Provenance

Share feedback

Package Sidebar
Install
npm i react-pdf

Repository

github.com/wojtekmaj/react-pdfHomepage
github.com/wojtekmaj/react-pdf#readme

Fund this package

Weekly Downloads944,709

Version
7.7.1

License
MIT

Unpacked Size
652 kB

Total Files
183

Last publish
16 days ago

Collaborators
	

Try on RunKit
Report malware
 Footer

Support
	Help
	Advisories
	Status
	Contact npm

Company
	About
	Blog
	Press

Terms & Policies
	Policies
	Terms of Use
	Code of Conduct
	Privacy

