react-esc-example

0.1.0 • Public • Published

Example for React-ESC

Build Status dependencies devDependency Status codecov js-standard-style

This project is based on universal-react-redux-starter-kit

Install dependencies, and check to see it works

$ npm install                   # Install project dependencies
$ npm start                     # Compile and launch

If everything works, you should see the following:

While developing, you will probably rely mostly on npm start; however, there are additional scripts at your disposal:

npm run <script> Description
start Serves your app at localhost:3000. HMR will be enabled in development.
start:dev Same as start but overrides NODE_ENV to "development".
start:prod Serves your app at localhost:3000. Production environment.
compile Compiles the application to disk (~/dist by default).
test Runs unit tests with Karma and generates a coverage report.
test:dev Runs Karma and watches for changes to re-run tests; does not generate coverage reports.
deploy Runs linter, tests, and then, on success, compiles your application to disk.
deploy:dev Same as deploy but overrides NODE_ENV to "development".
deploy:prod Same as deploy but overrides NODE_ENV to "production".

Application Structure

The application structure presented in this boilerplate is fractal, where functionality is grouped primarily by feature rather than file type. Please note, however, that this structure is only meant to serve as a guide, it is by no means prescriptive. That said, it aims to represent generally accepted guidelines and patterns for building scalable applications. If you wish to read more about this pattern, please check out this awesome writeup by Justin Greenberg.

.
├── bin                      # Build/Start scripts
├── build                    # All build-related configuration
│   └── karma                # Configuration file for karma
├── config                   # Project configuration settings
├── src                      # Application source code
│   ├── client.js            # Application bootstrap and rendering
│   ├── components           # Reusable Presentational Components
│   ├── containers           # Reusable Container Components
│   ├── layouts              # Components that dictate major page structure
│   ├── modules              # Modules that deserve a separate file
│   ├── routes               # Main route definitions and async split points
│   │   ├── index.js         # Bootstrap main application routes with store
│   │   └── Home             # Fractal route
│   │       ├── index.js     # Route definitions and async split points
│   │       ├── assets       # Assets required to render components
│   │       ├── components   # Presentational React Components
│   │       ├── container    # Connect components to actions and store
│   │       ├── modules      # Collections of reducers/constants/actions
│   │       └── routes **    # Fractal sub-routes (** optional)
│   ├── static               # Static assets (not imported anywhere in source code)
│   ├── store                # Redux-specific pieces
│   │   └── reducers.js      # Reducer registry and injection
│   └── styles               # Application-wide styles (generally settings)
└── tests                    # Unit tests

Routing

We use react-router route definitions (<route>/index.js) to define units of logic within our application. See the application structure section for more information.

Testing

To add a unit test, simply create a .spec.js file anywhere in ~/tests. Karma will pick up on these files automatically, and Mocha and Chai will be available within your test without the need to import them. If you are using redux-cli, test files should automatically be generated when you create a component or redux module.

Coverage reports will be compiled to ~/coverage by default. If you wish to change what reporters are used and where reports are compiled, you can do so by modifying coverage_reporters in ~/config/index.js.

Deployment

Out of the box, this starter kit is deployable by serving the ~/dist folder generated by npm run deploy (make sure to specify your target NODE_ENV as well). This project does not concern itself with the details of server-side rendering or API structure, since that demands an opinionated structure that makes it difficult to extend the starter kit. However, if you do need help with more advanced deployment strategies, here are a few tips:

Root Resolve

Webpack is configured to make use of resolve.root, which lets you import local packages as if you were traversing from the root of your ~/src directory. Here's an example:

// current file: ~/src/views/some/nested/View.js
// What used to be this:
import SomeComponent from '../../../components/SomeComponent'

// Can now be this:
import SomeComponent from 'components/SomeComponent' // Hooray!

Globals

These are global variables available to you anywhere in your source code. If you wish to modify them, they can be found as the globals key in ~/config/index.js. When adding new globals, make sure you also add them to ~/.eslintrc.

Variable Description
process.env.NODE_ENV the active NODE_ENV when the build started
__DEV__ True when process.env.NODE_ENV is development
__PROD__ True when process.env.NODE_ENV is production
__TEST__ True when process.env.NODE_ENV is test
__DEBUG__ True when process.env.NODE_ENV is development and cli arg --no_debug is not set (npm run dev:no-debug)
__BASENAME__ history basename option

Styles

Both .scss and .css file extensions are supported out of the box and are configured to use CSS Modules. After being imported, styles will be processed with PostCSS for minification and autoprefixing, and will be extracted to a .css file during production builds.

Server

This starter kit comes with React-ESC (Easy to use Client and Server) who handles the complete server side and client rendering so you can focus on what you love.

Readme

Keywords

none

Package Sidebar

Install

npm i react-esc-example

Weekly Downloads

0

Version

0.1.0

License

MIT

Last publish

Collaborators

  • tripss