random-extra
Seedable random number generator supporting many common distributions.
this module fork from transitive-bullshit/random, with typescript support and some other change (include breaking change)
Welcome to the most random module on npm! 😜
Highlights
Wellcome send PR for more API support or performance up
- Simple API (make easy things easy and hard things possible)
- Seedable based on entropy or user input
- Plugin support for different pseudo random number generators (PRNGs)
- Sample from many common distributions
- dfUniform, dfNormal, dfPoisson, dfBernoulli, etc see distributions
- Validates all user input via chai
- Integrates with seedrandom
- Supports node.js >= 7 and browser (if here has no break)
breaking change: v2.x to v3.x
- for more easy know what api do by method name
- all (distribution function) method rename and add prefix
df
(ex:itemByWeight
=>dfItemByWeight
)
when run in loop, or wanna performance, pls use (distribution function) version - remove
shortid
Install
npm install random-extra seedrandom
Usage (new)
import random from 'random-extra';
import random = require('random-extra');
.use
vs .newUse
-
.use
will change current random object -
.newUse
will create new random object
preset
seedrandom
use seedrandom for make seed-able
import seedrandom from 'random-extra/preset/seedrandom';
import { seedrandom } from 'random-extra/preset/seedrandom';
when use seedrandom, srand will able use
seedrandom.rand() // use current seed
seedrandom.srand() // every time call srand will make new seed
seedrandom.rand() // use new seed
other way make seedrandom
import random from 'random-extra';
const seedrandom = random.newUse('seedrandom')
import _seedrandom = require('seedrandom')
random.newUse(_seedrandom('hello.', { entropy: true }))
random.newUse(_seedrandom('hello.', { entropy: false }))
random.newUse(_seedrandom('hello.'))
Usage (original)
const random = require('random-extra')
// quick uniform shortcuts
random.float(min = 0, max = 1) // uniform float in [ min, max )
random.int(min = 0, max = 1) // uniform integer in [ min, max ]
random.boolean() // true or false
// uniform
random.dfUniform(min = 0, max = 1) // () => [ min, max )
random.dfUniformInt(min = 0, max = 1) // () => [ min, max ]
random.dfUniformBoolean() // () => [ false, true ]
// normal
random.dfNormal(mu = 0, sigma = 1)
random.dfLogNormal(mu = 0, sigma = 1)
// bernoulli
random.dfBernoulli(p = 0.5)
random.dfBinomial(n = 1, p = 0.5)
random.dfGeometric(p = 0.5)
// poisson
random.dfPoisson(lambda = 1)
random.dfExponential(lambda = 1)
// misc
random.dfIrwinHall(n)
random.dfBates(n)
random.dfPareto(alpha)
For convenience, several common dfUniform samplers are exposed directly:
random.float() // 0.2149383367670885
random.int(0, 100) // 72
random.boolean() // true
All distribution methods return a thunk (function with no params), which will return a series of independent, identically distributed random variables from the specified distribution.
// create a normal distribution with default params (mu=1 and sigma=0)
const normal = random.dfNormal()
normal() // 0.4855465422678824
normal() // -0.06696771815439678
normal() // 0.7350852689834705
// create a poisson distribution with default params (lambda=1)
const poisson = random.dfPoisson()
poisson() // 0
poisson() // 4
poisson() // 1
Note that returning a thunk here is more efficient when generating multiple samples from the same distribution.
You can change the underlying PRNG or its seed as follows:
const seedrandom = require('seedrandom')
// change the underlying pseudo random number generator
// by default, Math.random is used as the underlying PRNG
random.use(seedrandom('foobar'))
// create a new independent random number generator
const rng = random.clone('my-new-seed')
// create a second independent random number generator and use a seeded PRNG
const rng2 = random.clone(seedrandom('kittyfoo'))
// replace Math.random with rng.uniform
rng.patch()
// restore original Math.random
rng.unpatch()
API
Table of Contents
Random
Seedable random number generator supporting many common distributions.
Defaults to Math.random as its underlying pseudorandom number generator.
Type: function (rng)
-
rng
(Rng | function) Underlying pseudorandom number generator. (optional, defaultMath.random
)
Todo
-
Distributions
- [x] dfUniform
- [x] dfUniformInt
- [x] dfUniformBoolean
- [x] dfNormal
- [x] dfLogNormal
- [ ] chiSquared
- [ ] cauchy
- [ ] fischerF
- [ ] studentT
- [x] dfBernoulli
- [x] dfBinomial
- [ ] negativeBinomial
- [x] dfGeometric
- [x] dfPoisson
- [x] dfExponential
- [ ] gamma
- [ ] hyperExponential
- [ ] weibull
- [ ] beta
- [ ] laplace
- [x] dfIrwinHall
- [x] dfBates
- [x] dfPareto
-
Generators
- [x] pluggable prng
- [ ] port more prng from boost
- [ ] custom entropy
-
Misc
- [x] browser support via rollup
- [x] basic docs
- [x] basic tests
- [ ] full test suite
- [x] initial release!
Related
- d3-random - D3's excellent random number generation library.
- seedrandom - Seedable pseudo random number generator.
- random-int - For the common use case of generating dfUniform random ints.
- random-float - For the common use case of generating dfUniform random floats.
- randombytes - Random crypto bytes for Node.js and the browser.
Credit
Huge shoutout to Roger Combs for donating the random
npm package for this project!
Lots of inspiration from d3-random (@mbostock and @svanschooten).
Some distributions and PRNGs are ported from C++ boost::random.
License
MIT © Travis Fischer