Norse Power Metal

    oniyi-ltpa
    TypeScript icon, indicating that this package has built-in type declarations

    2.1.0 • Public • Published

    oniyi-ltpa

    Tools to deal with Lightweight Third-Party Authentication 2 (LTPA2) tokens

    Usage

    This package's main module exports a factory function – used to create an instance of LTPA tools that work with your specific LTPA keys and password.

    The factory takes two arguments:

    • keyfilePath - path to LTPA keys file (e.g. from IBM WebSphere Application Server). Relative paths are resolved from process.cwd()
    • password - the password for keyfilePath
    const { ltpa2Factory } = require('oniyi-ltpa');
    const { LTPA_PASSWORD } = process.env;
    
    ltpa2Factory('/path/to/my/keys.properties', LTPA_PASSWORD, (err, ltpa2Tools) => {
      // handle err
      // or use ltpa2Tools
      // here
    });

    ltpa2Tools

    Since LTPA version 1 and version 2 use different algorithms to cypher and de-cypher the token value, this module now (starting with version 1.1.0) exposes an additional method to decode LTPA version 1 tokens.

    Ciphers used:

    • LTPA version 1: 'DES-EDE3'
    • LTPA version 2: 'AES-128-CBC'

    getKeyfile

    returns a copy of the keyfilePath contents enriched with a privateKeyPEM property (holds RSA PEM for private key)

    decode

    use this method to decode an existing LTPA2 token (e.g. from a cookie value)

    // assuming `myLtpaToken2` holds the value of an existing LTPA2 token
    const myLtpaToken2 = 'sMzub9exuSeFniM/ae6U...My0njWl7rFygcs0bL8Y=';
    
    ltpa2Factory('keys.properties', LTPA_PASSWORD, (err, ltpa2Tools) => {
      // handle error
    
      // Decode an existing token
      const ltpaToken2Content = ltpa2Tools.decode(myLtpaToken2);
      // { body:
      //  { expire: '1511205660000',
      //    host: 'my.websphere.host',
      //    'java.naming.provider.url': 'corbaloc\\:iiop\\:my-websphere-host\\:9811/WsnAdminNameService',
      //    port: '8881',
      //    'process.serverName': 'cell01\\:node01\\:cluster01_server01',
      //    'security.authMechOID': 'oid\\:1.3.18.0.2.30.2',
      //    type: 'SOAP',
      //    u: 'user\\:my.ldap.host\\:389/CN=Max Mustermann,OU=ACME-User,dc=ad,dc=acme,dc=com' },
      // expires: 1511535657828,
      // signature: 'o+oVbX3SMKG...J3wDaPi6DIdCNblLF7h2A=' }
    });

    decodeV1

    use this method to decode an existing LTPA1 token (created with the same LTPA keys).

    // assuming `myLtpaToken` holds the value of an existing LTPA1 token
    const myLtpaToken = 'sMzub9exuSeFniM/ae6U...My0njWl7rFygcs0bL8Y=';
    
    ltpa2Factory('keys.properties', LTPA_PASSWORD, (err, ltpa2Tools) => {
      // handle error
    
      // Decode an existing token
      const ltpaTokenContent = ltpa2Tools.decodeV1(myLtpaToken);
      // {
      //    body:
      //      { u: 'user\\:my.ldap.host\\:389/CN=Max Mustermann,OU=ACME-User,dc=ad,dc=acme,dc=com' },
      //    expires: 1511535657828,
      //    signature: 'o+oVbX3SMKG...J3wDaPi6DIdCNblLF7h2A=',
      // }
    });

    makeToken

    use this method to encode an object into an LTPA2 string value.
    this method takes an object as single argument. object must have the properties body and expires.

    ltpa2Factory('keys.properties', LTPA_PASSWORD, (err, ltpa2Tools) => {
      // handle error
    
      const content = {
        body: {
          expire: '1511205660000',
          host: 'my.websphere.host',
          'java.naming.provider.url': 'corbaloc\\:iiop\\:my-websphere-host\\:9811/WsnAdminNameService',
          port: '8881',
          'process.serverName': 'cell01\\:node01\\:cluster01_server01',
          'security.authMechOID': 'oid\\:1.3.18.0.2.30.2',
          type: 'SOAP',
          u: 'user\\:my.ldap.host\\:389/CN=Max Mustermann,OU=ACME-User,dc=ad,dc=acme,dc=com',
        },
        expires: 1511535657828,
      };
    
      const newLtpaToken = ltpa2Tools.makeToken(content);
      // sMzub9exuSeFniM/ae6U...My0njWl7rFygcasdfcdsuoj8709uL8Y=
    });

    Under the hood

    When the factory is invoked, oniyi-ltpa attempts to read the contents of keyfilePath and decodes the provided password into the actual . To get to the actual DES_EDE_3_KEY, password needs to be decoded and used to decrypt the des3Key property from keyfilePath. Decoding password means to sha1 hash it and right-pad the result with 0*0 bytes to a total length of 24 bytes. Finally, we need to base64 decode des3Key and decipher the result with our hashed and padded password. The result can then be used as DES_EDE_3_KEY secret for further (de-)crypto actions. The following abstract formula describes how des3Key in our keyfilePath was created:

    base64Encode(crypt(myActualKey, 'DES-EDE3', pad(sha1(password), 24)))
    

    The same procedure is then repeated for the privateKey property from keyfilePath. The result is a decrypted private key buffer, which oniyi-ltpa then transforms into a RSA private key PEM. The RSA PEM is used when makeToken gets invoked – and allows us to leverage node.js' native crypto.createSign() when signing the contents of an LTPA2 token. The following abstract formulas describe how signatures are created:

    LTPA1 BASE64( RSA( SHA_DIGEST( token_body ) ) )
    LTPA2 BASE64( SHA1_WITH_RSA( SHA_DIGEST( token_body ) ) )
    

    When compiling the RSA from the decrypted private key buffer, oniyi-ltpa performs some additional calculations to get to the missing pieces required for RSA. In short, the privateKey from keyfilePath only contains the bare minimum of informations, all of them joined into a single value. So, basically, the private key as a variable length (length is different for each LTPA key). It's built by adding the following bytes to a buffer:

    • left-pad (4 bytes) - no use
    • private exponent / d (variable size)
    • public exponent / e (3 bytes)
    • prime1 (65 bytes)
    • prime2 (65 bytes)

    Having this information at hand, the remaining RSA components can be calculated as follows:

    RSAPrivateKey ::= SEQUENCE {
      version           Version,
      modulus           INTEGER,  -- n
      publicExponent    INTEGER,  -- e
      privateExponent   INTEGER,  -- d
      prime1            INTEGER,  -- p
      prime2            INTEGER,  -- q
      exponent1         INTEGER,  -- d mod (p-1)
      exponent2         INTEGER,  -- d mod (q-1)
      coefficient       INTEGER,  -- (inverse of q) mod p
      otherPrimeInfos   OtherPrimeInfos OPTIONAL
    }
    

    All of these computations require to deal with BigInteger variables, which are not natively supported in node.js. Luckily, there are existing packages for this already: big-integer and node-biginteger. Unfortunately, oniyi-ltpa needs both because one of them can transform from and to buffers and the other has all the computations needed.

    Install

    npm i oniyi-ltpa

    DownloadsWeekly Downloads

    4

    Version

    2.1.0

    License

    MIT

    Unpacked Size

    23.7 kB

    Total Files

    10

    Last publish

    Collaborators

    • bkroeger