Need private packages and team management tools?Check out npm Orgs. »


0.2.3 • Public • Published


bls12-381, a pairing-friendly elliptic curve construction.

This is a Barreto-Lynn-Scott curve with an embedding degree of 12. It's optimal for zk-SNARKs at the 128-bit security level.

It allows simple construction of threshold signatures, which allows a user to sign lots of messages with one signature and verify them swiftly in a batch.

This library belongs to noble crypto

noble-crypto — high-security, easily auditable set of contained cryptographic libraries and tools.


npm install noble-bls12-381

Sign a message

import * as bls from "bls12-381";
const DOMAIN = 2;
const PRIVATE_KEY = 0xa665a45920422f9d417e4867ef;
const HASH_MESSAGE = new Uint8Array([99, 100, 101, 102, 103]);
(async () => {
  const publicKey = bls.getPublicKey(PRIVATE_KEY);
  const signature = await bls.sign(HASH_MESSAGE, PRIVATE_KEY, DOMAIN);
  const isCorrect = await bls.verify(HASH_MESSAGE, publicKey, signature, DOMAIN);

Sign 1 message 3 times

import * as bls from "bls12-381";
const DOMAIN = 2;
const PRIVATE_KEYS = [81, 455, 19];
const HASH_MESSAGE = new Uint8Array([99, 100, 101, 102, 103]);
(async () => {
  const publicKeys =;
  const signatures = await Promise.all( => bls.sign(HASH_MESSAGE, p, DOMAIN)));
  const publicKey = await bls.aggregatePublicKeys(publicKeys);
  const signature = await bls.aggregateSignatures(signatures);
  const isCorrect = await bls.verify(HASH_MESSAGE, publicKey, signature, DOMAIN);

Sign 3 messages with 3 keys

import * as bls from "bls12-381";
const DOMAIN = 2;
const PRIVATE_KEYS = [81, 455, 19];
const HASH_MESSAGES = ["deadbeef", "111111", "aaaaaabbbbbb"];
(async () => {
  const publicKeys =;
  const signatures = await Promise.all(, i) => bls.sign(HASH_MESSAGES[i], p, DOMAIN)));
  const signature = await bls.aggregateSignatures(signatures);
  const isCorrect = await bls.verifyMultiple(HASH_MESSAGES, publicKeys, signature, DOMAIN);


function getPublicKey(privateKey: Uint8Array | string | bigint): Uint8Array;
  • privateKey: Uint8Array | string | bigint will be used to generate public key. Public key is generated by executing scalar multiplication of a base Point(x, y) by a fixed integer. The result is another Point(x, y) which we will by default encode to hex Uint8Array.
  • Returns Uint8Array: encoded publicKey for signature verification
sign(hash, privateKey, domain)
function sign(
  hash: Uint8Array | string,
  privateKey: Uint8Array | string | bigint,
  domain: Uint8Array | string | bigint
): Promise<Uint8Array>;
  • hash: Uint8Array | string - message hash which would be signed
  • privateKey: Uint8Array | string | bigint - private key which will sign the hash
  • domain: Uint8Array | string | bigint - signature version. Different domains will give different signatures. Setting a new domain in an upgraded system prevents it from being affected by the old messages and signatures.
  • Returns Uint8Array: encoded signature
verify(hash, publicKey, signature, domain)
function verify(
  hash: Uint8Array | string,
  publicKey: Uint8Array | string,
  signature: Uint8Array | string,
  domain: Uint8Array | string | bigint
): Promise<boolean>
  • hash: Uint8Array | string - message hash that needs to be verified
  • publicKey: Uint8Array | string - e.g. that was generated from privateKey by getPublicKey
  • signature: Uint8Array | string - object returned by the sign or aggregateSignatures function
  • Returns Promise<boolean>: true / false whether the signature matches hash
function aggregatePublicKeys(publicKeys: Uint8Array[] | string[]): Uint8Array;
  • publicKeys: Uint8Array[] | string[] - e.g. that have been generated from privateKey by getPublicKey
  • Returns Uint8Array: one aggregated public key which calculated from public keys
function aggregateSignatures(signatures: Uint8Array[] | string[]): Uint8Array;
  • signatures: Uint8Array[] | string[] - e.g. that have been generated by sign
  • Returns Uint8Array: one aggregated signature which calculated from signatures
verifyMultiple(hashes, publicKeys, signature, domain)
function verifyMultiple(
  hashes: Uint8Array[] | string[],
  publicKeys: Uint8Array[] | string[],
  signature: Uint8Array | string,
  domain: Uint8Array | string | bigint
): Promise<boolean>
  • hashes: Uint8Array[] | string[] - messages hashes that needs to be verified
  • publicKeys: Uint8Array[] | string[] - e.g. that were generated from privateKeys by getPublicKey
  • signature: Uint8Array | string - object returned by the aggregateSignatures function
  • Returns Promise<boolean>: true / false whether the signature matches hashes
pairing(4dPoint, 2dPoint)
function pairing(
  4dPoint: Point<[bigint, bigint]>,
  2dPoint: Point<bigint>,
  withFinalExponent: boolean = true
): Point<[bigint, bigint, bigint, bigint, bigint, bigint, bigint, bigint, bigint, bigint, bigint, bigint]>
  • 4dPoint: Point<[bigint, bigint]> - 4d point (((x, x_1), (y, y_1)))
  • 2dPoint: Point<bigint> - simple point (x, y are encoded in the bigint).
  • withFinalExponent: boolean - if the flag setted as true then result will be powered by curve order else will be not.
  • Returns Point<BigintTwelve>: paired 12 dimensional point.
// 𝔽p
bls.P // 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaabn
// Prime order
bls.PRIME_ORDER // 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001n
// Hash base point (x, y)
bls.G1 // 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001n
// x = 3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507
// y = 1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569
// Signature base point ((x_1, x_2), (y_1, y_2))
// x = 3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758, 352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160
// y = 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582, 1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905
// Classes
bls.Fp // Subgroup
bls.Fp2 // 2-dimensional number
bls.Fp12 // 12-dimensional number
bls.Point // Elliptic curve point

Curve Description

BLS12-381 is a pairing-friendly elliptic curve construction from the BLS family, with embedding degree 12. It is built over a 381-bit prime field GF(p) with...

  • z = -0xd201000000010000
  • p = (z - 1)2 ((z4 - z2 + 1) / 3) + z
    • = 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab
  • q = z4 - z2 + 1
    • = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001

... yielding two source groups G1 and G2, each of 255-bit prime order q, such that an efficiently computable non-degenerate bilinear pairing function e exists into a third target group GT. Specifically, G1 is the q-order subgroup of E(Fp) : y^2 = x^3 + 4 and G2 is the q-order subgroup of E'(Fp2) : y2 = x3 + 4(u + 1) where the extention field Fp2 is defined as Fp(u) / (u2 + 1).

BLS12-381 is chosen so that z has small Hamming weight (to improve pairing performance) and also so that GF(q) has a large 232 primitive root of unity for performing radix-2 fast Fourier transforms for efficient multi-point evaluation and interpolation. It is also chosen so that it exists in a particularly efficient and rigid subfamily of BLS12 curves.


The library is pretty slow right now, but it's still good enough for many everyday cases.

getPublicKey#test x 1,080 ops/sec ±0.88% (85 runs sampled)
sign#test x 16.32 ops/sec ±1.08% (75 runs sampled)
aggregateSignatures#test x 161 ops/sec ±0.92% (79 runs sampled)
verify#test x 0.48 ops/sec ±0.74% (7 runs sampled)
Pairing#test x 1.05 ops/sec ±1.43% (7 runs sampled)


Noble is production-ready & secure. Our goal is to have it audited by a good security expert.

We're using built-in JS BigInt, which is "unsuitable for use in cryptography" as per official spec. This means that the lib is vulnerable to timing attacks. But:

  1. JIT-compiler and Garbage Collector make "constant time" extremely hard to achieve in a scripting language.
  2. Which means any other JS library doesn't use constant-time bigints. Including bn.js or anything else. Even statically typed Rust, a language without GC, makes it harder to achieve constant-time for some cases.
  3. Overall they are quite rare; for our particular usage they're unimportant. If your goal is absolute security, don't use any JS lib — including bindings to native ones. Try LibreSSL & similar low-level libraries & languages.
  4. We however consider infrastructure attacks like rogue NPM modules very important; that's why it's crucial to minimize the amount of 3rd-party dependencies & native bindings. If your app uses 500 dependencies, any dep could get hacked and you'll be downloading rootkits with every npm install. Our goal is to minimize this attack vector.


MIT (c) Paul Miller (, see LICENSE file.


npm i noble-bls12-381

Downloadsweekly downloads









last publish


  • avatar
Report a vulnerability