Nervous Parrot Muttering

    lexorder

    0.1.0 • Public • Published

    LexOrder

    Arbitrary precision lexicographical ordering.

    Installation

    $ npm install --save lexorder
    

    Usage

    The LexOrder class can generate words that are lexicographically ordered, using a set of symbols.

    Given a word using such symbols, it can calculate the next() or previous() word in sequence, trying to spread the results to some amount of symbols per word (the spreadLevel). With two different words, it can calculate the intermediate() with a simple average.

    To simplify the usage, there is also a get() method that calls the others and can give a starting point when you still don't have any words:

    lexOrder.get(null, null)   => medianSymbol
    lexOrder.get(word, null)   => lexOrder.next(word)
    lexOrder.get(null, word)   => lexOrder.previous(word)
    lexOrder.get(wordA, wordB) => lexOrder.intermediate(wordA, wordB)

    SymbolConverter

    To be able to work with long words and any set of symbols, two things are required:

    1. An arbitrary precision math library — they usually work in base-10 (decimal)

    2. Converting the symbols to/from numbers to do calculations

    This is why the LexOrder takes a SymbolConverter: an object with methods to help with these tasks and the symbols it works with.

    The default converter shipped with the lexorder package uses the built-in BigInt object and has a "base-256" symbol set. Actually, it is base-16 (hexadecimal) with pairs of digits, so each word could be stored as binary in a database.

    It would be possible to implement a base-36 set or any other variation, that could even use an alternative to BigInt, the only requirement is that the symbols are sorted properly.

    For example, using a base-4 set with the symbols ['0', 'a', 'b', 'c'] the words could be organized in a tree-like structure:

    Level 1                                                                                                                                                                                   a                                                          b                                                                                                                      c
    .                                                                                ________________________________________________________________________________________________________/ \________________________________________________________/ \____________________________________________________________________________________________________________________/ \____________________________________________
    Level 2                                                                          0a                                                                         0b             0c                           aa             ab             ac                           ba             bb                                                                         bc                           ca             cb             cc
    .                       ________________________________________________________/  \_______________________________________________________________________/  \___________/  \___________   ___________/  \___________/  \___________/  \___________   ___________/  \___________/  \_______________________________________________________________________/  \___________   ___________/  \___________/  \___________/  \___________
    Level 3                 00a                00b                00c                                  0aa                0ab                0ac                   0ba 0bb 0bc    0ca 0cb 0cc   a0a a0b a0c    aaa aab aac    aba abb abc    aca acb acc   b0a b0b b0c    baa bab bac                   bba                bbb                bbc                   bca bcb bcc   c0a c0b c0c    caa cab cac    cba cbb cbc    cca ccb ccc
    .        ______________/   \______________/   \______________/   \______________    ______________/   \______________/   \______________/   \______________                                                                                                                          ______________/   \______________/   \______________/   \______________                                                                          \______________
    Level 4  000a 000b 000c     00aa 00ab 00ac     00ba 00bb 00bc     00ca 00cb 00cc    0a0a 0a0b 0a0c     0aaa 0aab 0aac     0aba 0abb 0abc     0aca 0acb 0acc                                                                                                                          bb0a bb0b bb0c     bbaa bbab bbac     bbba bbbb bbbc     bbca bbcb bbcc                                                                           ccca cccb cccc
    

    Here, the median symbol is b. Using a spreadLevel of 3, we would have:

    lexOrder.get(null, null)  => 'b'
    
    lexOrder.get('b',   null) => 'b0a'  // same as lexOrder.next('b')
    lexOrder.get('b0a', null) => 'b0b'
    lexOrder.get('b0b', null) => 'b0c'
    lexOrder.get('b0c', null) => 'ba'
    lexOrder.get('ba',  null) => 'baa'
    // ...
    lexOrder.get('bb',  null) => 'bba'  // keeps the spreadLevel of 3
    // ...
    lexOrder.get('bcc', null) => 'c'
    
    lexOrder.get(null, 'b')   => 'acc'  // same as lexOrder.previous('b')
    lexOrder.get(null, 'acc') => 'acb'
    lexOrder.get(null, 'acb') => 'aca'
    lexOrder.get(null, 'aca') => 'ac'
    lexOrder.get(null, 'ac')  => 'abc'
    // ...
    lexOrder.get(null, 'a0a') => 'a'
    // ...
    lexOrder.get(null, '0b')  => '0ac'  // keeps the spreadLevel of 3
    
    lexOrder.get('ac',  'ba') => 'b'    // could be ('ba', 'ac')
    lexOrder.get('bba', 'bb') => 'bb0b'
    lexOrder.get('0abc', '0ac') => '0abcb' // Level 5

    Firstly, it can be noted in the tree that the zero symbol — symbols[0], the '0' character in this case — is significant at the start of the words. It makes possible to go indefinitely to the left of the tree, but never reaching an all-zeros word. On the other hand, zeros at the end of the word are discarded internally before returning. If you pass a word ending with the zero symbol, it will be ignored.

    The spreadLevel is not a hard limit, so advancing at the ends simply yields a longer word:

    lexOrder.get('ccc', null)  => 'ccca'
    lexOrder.get(null, '000a') => '0000c'

    And if there is no space between two words, an intermediate() would still be possible:

    lexOrder.get('bac', 'bb') => 'bacb'

    License

    See License.

    Changelog

    See CHANGELOG.md.

    Install

    npm i lexorder

    DownloadsWeekly Downloads

    2

    Version

    0.1.0

    License

    MIT

    Unpacked Size

    36.6 kB

    Total Files

    36

    Last publish

    Collaborators

    • aryelgois