Nimble Pixie Merchant

    jubaclient

    0.3.5 • Public • Published

    jubaclient

    npm version Build Status Codacy Badge Codacy Badge Known Vulnerabilities

    Jubatus CLI client (unofficial)

    Quick Start

    # startup jubaclassifier 
    # For example:  
    #  $ docker pull jubatus/jubatus 
    #  $ docker run -d -p 9199:9199 jubatus/jubatus jubaclassifier -f /opt/jubatus/share/jubatus/example/config/classifier/pa.json 
     
    # installation 
    npm install -g jubaclient
     
    # classifier#train() 
    echo '[ [ [ "baz", [ [ [ "foo", "bar" ] ] ] ] ] ]' \
    | jubaclient classifier train

    Requires

    Installation

    npm install -g jubaclient

    Usage

    jubaclient service method [-p port] [-h hostname] [-n name] [-t timeoutSeconds]

    jubaclient -i [service] [method] [-p port] [-h hostname] [-n name] [-t timeoutSeconds]

    jubaclient -v

    The jubaclient command requests JSON received from standard input with the specified method to the Jubatus server, and returns the response to the standard output.

    JSON passed to standard input is an array of method arguments.

    • For methods without arguments it is [].
    • If the method argument is a single string type, it should be like [ "foo" ].

    Tips: JSON formatting is useful for the jq command.

    The command line options are as follows:

    • service: sevice name (classifier, nearest_neighbor, etc.)
    • method: service method (get_status, train, get_k_center, etc.)
    • -p port : port number (default 9199)
    • -h hostname : hostname (default localhost)
    • -n name : name of target cluster (default '')
    • -t timeoutSeconds : timeout (default 0)
    • -i : interactive mode
    • -v : Print jubaclient's version.

    Examples

    • #save(id)
      echo '[ "jubaclient_save_1" ]' | jubaclient classifier save 
    • #get_status()
      echo '[]' | jubaclient classifier get_status | jq '.' 
    • #get_config()
      echo '[]' | jubaclient classifier get_config | jq '.|fromjson' 
    • classifier#train(data)
      jubaclient classifier train <<EOF | jq '.'
      [ [ [ "corge", [ [ [ "message", "<p>foo</p>" ] ] ] ] ] ]
      [ [ [ "corge", [ [ [ "message", "<p>bar</p>" ] ] ] ] ] ]
      [ [ [ "corge", [ [ [ "message", "<p>baz</p>" ] ] ] ] ] ]
      [ [ [ "grault", [ [ [ "message", "<p>qux</p>" ] ] ] ] ] ]
      [ [ [ "grault", [ [ [ "message", "<p>quux</p>" ] ] ] ] ] ]
      EOF
    • classifier#classify(data)
      jubaclient classifier classify <<EOF | jq '.'
      [ [ [ [ [ "message", "<b>quuz</b>" ] ] ] ] ]
      EOF

    Interactive mode

    With the -i option, it will be in interactive mode. When choosing service and method, it provides keyword completion system. When you send Ctrl-C (SIGINT) you return to choosing the service and method, and sending Ctrl-D (EOT) will end the process.

    Demonstration asciicast

    Tutorial

    Classifier

    See also http://jubat.us/en/tutorial/classifier.html

    1. start jubaclassifier process.

      jubaclassifier -D --configpath gender.json 
    2. train

      cat train.csv \
      | jq -RcM 'split(",")|[[[.[0],[[["hair",.[1]],["top",.[2]],["bottom",.[3]]],[["height",(.[4]|tonumber)]]]]]]' \
      | jubaclient classifier train
    3. classify

      cat classify.csv \
      | jq -RcM 'split(",")|[[[[["hair",.[0]],["top",.[1]],["bottom",.[2]]],[["height",(.[3]|tonumber)]]]]]' \
      | jubaclient classifier classify \
      | jq '.[]|max_by(.[1])'

    configure: gender.json

    {
      "method": "AROW",
      "converter": {
        "num_filter_types": {}, "num_filter_rules": [],
        "string_filter_types": {}, "string_filter_rules": [],
        "num_types": {}, "num_rules": [],
        "string_types": {
          "unigram": { "method": "ngram", "char_num": "1" }
        },
        "string_rules": [
          { "key": "*", "type": "unigram", "sample_weight": "bin", "global_weight": "bin" }
        ]
      },
      "parameter": { "regularization_weight" : 1.0 }
    }

    training data: train.csv

    male,short,sweater,jeans,1.70
    female,long,shirt,skirt,1.56
    male,short,jacket,chino,1.65
    female,short,T shirt,jeans,1.72
    male,long,T shirt,jeans,1.82
    female,long,jacket,skirt,1.43

    test data: classify.csv

    short,T shirt,jeans,1.81
    long,shirt,skirt,1.50

    Demonstration asciicast

    Install

    npm i jubaclient

    DownloadsWeekly Downloads

    49

    Version

    0.3.5

    License

    MIT

    Unpacked Size

    43 kB

    Total Files

    20

    Last publish

    Collaborators

    • naokikimura