Nearsighted Prank Master

    gpucomputationrender-three
    TypeScript icon, indicating that this package has built-in type declarations

    2.0.0 • Public • Published

    GPUComputationRender (ES6)

    Typescript definitions inside module

    With yarn

        yarn add gpucomputationrender-three
    

    Or with npm

        npm install --save gpucomputationrender-three
    

    Example of usage

    https://threejs.org/examples/?q=gpgpu#webgl_gpgpu_birds

    I just rewrite module to Typescript

    Edvinas pranka

    @epranka

    https://www.kodmina.lt

    Original module author yomboprime https://github.com/yomboprime

    GPUComputationRenderer, based on SimulationRenderer by zz85

    The GPUComputationRenderer uses the concept of variables. These variables are RGBA float textures that hold 4 floats for each compute element (texel)

    Each variable has a fragment shader that defines the computation made to obtain the variable in question.

    You can use as many variables you need, and make dependencies so you can use textures of other variables in the shader (the sampler uniforms are added automatically) Most of the variables will need themselves as dependency.

    The renderer has actually two render targets per variable, to make ping-pong. Textures from the current frame are used as inputs to render the textures of the next frame.

    The render targets of the variables can be used as input textures for your visualization shaders.

    Variable names should be valid identifiers and should not collide with THREE GLSL used identifiers.

    A common approach could be to use 'texture' prefixing the variable name; i.e texturePosition, textureVelocity...

    The size of the computation (sizeX * sizeY) is defined as 'resolution' automatically in the shader. For example:

    DEFINE resolution vec2( 1024.0, 1024.0 )


    Basic use:

    // Initialization...
    
    // Create computation renderer
    
    var gpuCompute = new GPUComputationRenderer( 1024, 1024, renderer );
    
    // Create initial state float textures
    
    var pos0 = gpuCompute.createTexture();
    
    var vel0 = gpuCompute.createTexture();
    
    // and fill in here the texture data...
    
    // Add texture variables
    
    var velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, pos0 );
    
    var posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, vel0 );
    
    // Add variable dependencies
    
    gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] );
    
    gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] );
    
    // Add custom uniforms
    
    velVar.material.uniforms.time = { value: 0.0 };
    
    // Check for completeness
    
    var error = gpuCompute.init();
    
    if ( error !== null ) {
    
     console.error( error );
    
    }
    
    // In each frame...
    
    // Compute!
    
    gpuCompute.compute();
    
    // Update texture uniforms in your visualization materials with the gpu renderer output
    
    myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture;
    
    // Do your rendering
    
    renderer.render( myScene, myCamera );
    

    Also, you can use utility functions to create ShaderMaterial and perform computations (rendering between textures)

    Note that the shaders can have multiple input textures.

    var myFilter1 = gpuCompute.createShaderMaterial( myFilterFragmentShader1, { theTexture: { value: null } } );
    
    var myFilter2 = gpuCompute.createShaderMaterial( myFilterFragmentShader2, { theTexture: { value: null } } );
    
    var inputTexture = gpuCompute.createTexture();
    
    // Fill in here inputTexture...
    
    myFilter1.uniforms.theTexture.value = inputTexture;
    
    var myRenderTarget = gpuCompute.createRenderTarget();
    
    myFilter2.uniforms.theTexture.value = myRenderTarget.texture;
    
    var outputRenderTarget = gpuCompute.createRenderTarget();
    
    // Now use the output texture where you want:
    
    myMaterial.uniforms.map.value = outputRenderTarget.texture;
    
    // And compute each frame, before rendering to screen:
    
    gpuCompute.doRenderTarget( myFilter1, myRenderTarget );
    
    gpuCompute.doRenderTarget( myFilter2, outputRenderTarget );
    

    Install

    npm i gpucomputationrender-three

    DownloadsWeekly Downloads

    2

    Version

    2.0.0

    License

    MIT

    Unpacked Size

    34 kB

    Total Files

    7

    Last publish

    Collaborators

    • epranka