Nifty Poutine Meal

    danfojs
    TypeScript icon, indicating that this package has built-in type declarations

    1.1.2 • Public • Published


    Danfojs: powerful javascript data analysis toolkit

    Node.js CI Coverage Status Twitter Patreon donate button

    What is it?

    Danfo.js is a javascript package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It is heavily inspired by Pandas library, and provides a similar API. This means that users familiar with Pandas, can easily pick up danfo.js.

    Main Features

    • Danfo.js is fast. It is built on Tensorflow.js, and supports tensors out of the box. This means you can convert Danfo data structure to Tensors.
    • Easy handling of missing-data (represented as NaN) in floating point as well as non-floating point data
    • Size mutability: columns can be inserted/deleted from DataFrame
    • Automatic and explicit alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations
    • Powerful, flexible groupby functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data
    • Make it easy to convert Arrays, JSONs, List or Objects, Tensors and differently-indexed data structures into DataFrame objects
    • Intelligent label-based slicing, fancy indexing, and querying of large data sets
    • Intuitive merging and joining data sets
    • Robust IO tools for loading data from flat-files (CSV, Json, Excel, Data package).
    • Powerful, flexible and intutive API for plotting DataFrames and Series interactively.
    • Timeseries-specific functionality: date range generation and date and time properties.
    • Robust data preprocessing functions like OneHotEncoders, LabelEncoders, and scalers like StandardScaler and MinMaxScaler are supported on DataFrame and Series

    Installation

    There are three ways to install and use Danfo.js in your application

    • For Nodejs applications, you can install the danfojs-node version via package managers like yarn and/or npm:
    npm install danfojs-node
    
    or
    
    yarn add danfojs-node

    For client-side applications built with frameworks like React, Vue, Next.js, etc, you can install the danfojs version:

    npm install danfojs
    
    or
    
    yarn add danfojs

    For use directly in HTML files, you can add the latest script tag from JsDelivr to your HTML file:

        <script src="https://cdn.jsdelivr.net/npm/danfojs@1.1.2/lib/bundle.js"></script>

    See all available versions here

    Example Usage in the Browser

    Run in Code Sandbox

    <!DOCTYPE html>
    <html lang="en">
      <head>
        <meta charset="UTF-8" />
        <meta name="viewport" content="width=device-width, initial-scale=1.0" />
        <script src="https://cdn.jsdelivr.net/npm/danfojs@1.1.2/lib/bundle.js"></script>
    
        <title>Document</title>
      </head>
    
      <body>
        <div id="div1"></div>
        <div id="div2"></div>
        <div id="div3"></div>
    
        <script>
    
          dfd.readCSV("https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv")
              .then(df => {
    
                  df['AAPL.Open'].plot("div1").box() //makes a box plot
    
                  df.plot("div2").table() //display csv as table
    
                  new_df = df.setIndex({ column: "Date", drop: true }); //resets the index to Date column
                  new_df.head().print() //
                  new_df.plot("div3").line({
                      config: {
                          columns: ["AAPL.Open", "AAPL.High"]
                      }
                  })  //makes a timeseries plot
    
              }).catch(err => {
                  console.log(err);
              })
        </script>
      </body>
    </html>

    Output in Browser:

    Example usage in Nodejs

    const dfd = require("danfojs-node")
    
    const file_url = "https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/stuff/titanic.csv"
    dfd.readCSV(file_url)
        .then(df => {
            //prints the first five columns
            df.head().print()
    
            // Calculate descriptive statistics for all numerical columns
            df.describe().print()
    
            //prints the shape of the data
            console.log(df.shape);
    
            //prints all column names
            console.log(df.columns);
    
            // //prints the inferred dtypes of each column
            df.ctypes.print()
    
            //selecting a column by subsetting
            df['Name'].print()
    
            //drop columns by names
            cols_2_remove = ['Age', 'Pclass']
            df_drop = df.drop({ columns: cols_2_remove, axis: 1 })
            df_drop.print()
    
    
            //select columns by dtypes
            let str_cols = df_drop.selectDtypes(["string"])
            let num_cols = df_drop.selectDtypes(["int32", "float32"])
            str_cols.print()
            num_cols.print()
    
    
            //add new column to Dataframe
    
            let new_vals = df['Fare'].round(1)
            df_drop.addColumn("fare_round", new_vals, { inplace: true })
            df_drop.print()
    
            df_drop['fare_round'].round(2).print(5)
    
            //prints the number of occurence each value in the column
            df_drop['Survived'].valueCounts().print()
    
            //print the last ten elementa of a DataFrame
            df_drop.tail(10).print()
    
            //prints the number of missing values in a DataFrame
            df_drop.isNa().sum().print()
    
        }).catch(err => {
            console.log(err);
        })
    

    Output in Node Console:

    Notebook support

    • You can use Danfo.js on Dnotebooks playground here
    • VsCode nodejs notebook extension now supports Danfo.js. See guide here

    See the Official Getting Started Guide

    Documentation

    The official documentation can be found here

    Danfo.js Official Book

    image

    We recently published a book titled "Building Data Driven Applications with Danfo.js". Read more about it here

    Discussion and Development

    Development discussions take place here.

    Contributing to Danfo

    All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome. A detailed overview on how to contribute can be found in the contributing guide.

    Licence MIT

    Created by Rising Odegua and Stephen Oni

    Danfo.js - Open Source JavaScript library for manipulating data. | Product Hunt Embed

    Install

    npm i danfojs

    DownloadsWeekly Downloads

    1,773

    Version

    1.1.2

    License

    MIT

    Unpacked Size

    38.5 MB

    Total Files

    87

    Last publish

    Collaborators

    • dcrescim
    • opensource9ja
    • steveoni