bloem

Bloom Filter using the FNV hash function

Bloem - Bloom Filter for node.js

Bloem implements three Bloom Filters for node.js. All use the FNV Hash function and the optimization described in [1] by Kirsch and Mitzenmacher.

  • Bloem, a classic bloom filter dimensioned by the size of the bitfield and the number of hash functions
  • SafeBloem, enforces a given false positive error probabilty for a given capacity
  • ScalingBloem, a scaling bloom filter (SBF) as described by Almeida et al. in [2]
npm install bloem
var bloem = require('bloem')
var filter = new bloem.Bloem(16, 2)
filter.has(Buffer("foobar")) // false
filter.add(Buffer("foobar"))
filter.has(Buffer("foobar")) // true
filter.has(Buffer("hello world")) // false
var bloem = require('bloem')
var filter = new bloem.SafeBloem(2, 0.1)
filter.add(Buffer("1")) // true
filter.add(Buffer("2")) // true
filter.add(Buffer("3")) // false

filter.has(Buffer("3")) // false
filter.has(Buffer("1")) // true
  • size Number - bits in the bitfield
  • slices Number - how many hashfunctions to use

Create a new Bloem filter object.

  • key Buffer - key to add

Add a key to the set

  • key Buffer

Test if key is in the set

  • capacity Number - capacity of the filter
  • error_rate Number

Create a new bloom filter that can hold capacity elements with an error probability of error_rate.

  • key Buffer - key to add

Add a key to the set. Returnes true on success and false if the filter is full.

  • key Buffer

Test if key is in the set

  • error_rate Number

Creates an instance of a scaling bloom filter. Accepts a "options" Object that takes the following values:

  • initial_capacity - the capacity of the first filter. Default: 1000
  • scaling - the scaling factor. Use 2 here for less space usage but higher cpu usage or 4 for higher space, but lower cpu usage. Default: 2
  • ratio - tightening ratio with 0 < ratio < 1. Default: 0.9
  • key Buffer - key to add

Add a key to the set

  • key Buffer

Test if key is in the set