node package manager
It’s your turn. Help us improve JavaScript. Take the 2017 JavaScript Ecosystem Survey »



Computes a minimum vertex cover of a bipartite graph. Internally, this implementation uses the Hopcroft-Karp algorithm and Konig's theorem to compute the minimal vertex cover of a bipartite graph in O(sqrt(V) * E) time. This code works in both node.js and in a modern browser via browserify.


var findCover = require("bipartite-vertex-cover")
var cover = findCover(4, 4, [
    [0, 1],
    [1, 0],
    [1, 1],
    [1, 2],
    [2, 1],
    [3, 2],
    [3, 3]
// Cover = [ [3, 1], [1] ] 


npm install bipartite-vertex-cover

require("bipartite-vertex-cover")(n, m, edges)

Finds a minimal vertex cover for a bipartite graph.

  • n is the number of vertices in the left component
  • m is the number of vertices in the right component
  • edges is a list of edges from the left component connecting to the right component represented by pairs of integers between 0 and n-1,m-1 respectively

Returns A pair of lists representing the vertices in the left component and the right component respectively which are in the cover.


(c) 2014 Mikola Lysenko. MIT License