Noisy Pillaging Monster

    @stdlib/stats-base-dists-hypergeometric-logpmf
    TypeScript icon, indicating that this package has built-in type declarations

    0.0.7 • Public • Published

    Logarithm of Probability Mass Function

    NPM version Build Status Coverage Status

    Evaluate the natural logarithm of the probability mass function (PMF) for a hypergeometric distribution.

    Imagine a scenario with a population of size N, of which a subpopulation of size K can be considered successes. We draw n observations from the total population. Defining the random variable X as the number of successes in the n draws, X is said to follow a hypergeometric distribution. The probability mass function (PMF) for a hypergeometric random variable is given by

    Probability mass function (PMF) for a hypergeometric distribution.

    Installation

    npm install @stdlib/stats-base-dists-hypergeometric-logpmf

    Usage

    var logpmf = require( '@stdlib/stats-base-dists-hypergeometric-logpmf' );

    logpmf( x, N, K, n )

    Evaluates the natural logarithm of the probability mass function (PMF) for a hypergeometric distribution with parameters N (population size), K (subpopulation size), and n (number of draws).

    var y = logpmf( 1.0, 8, 4, 2 );
    // returns ~-0.56
    
    y = logpmf( 2.0, 8, 4, 2 );
    // returns ~-1.54
    
    y = logpmf( 0.0, 8, 4, 2 );
    // returns ~-1.54
    
    y = logpmf( 1.5, 8, 4, 2 );
    // returns -Infinity

    If provided NaN as any argument, the function returns NaN.

    var y = logpmf( NaN, 10, 5, 2 );
    // returns NaN
    
    y = logpmf( 0.0, NaN, 5, 2 );
    // returns NaN
    
    y = logpmf( 0.0, 10, NaN, 2 );
    // returns NaN
    
    y = logpmf( 0.0, 10, 5, NaN );
    // returns NaN

    If provided a population size N, subpopulation size K, or draws n which is not a nonnegative integer, the function returns NaN.

    var y = logpmf( 2.0, 10.5, 5, 2 );
    // returns NaN
    
    y = logpmf( 2.0, 10, 1.5, 2 );
    // returns NaN
    
    y = logpmf( 2.0, 10, 5, -2.0 );
    // returns NaN

    If the number of draws n or the subpopulation size K exceed population size N, the function returns NaN.

    var y = logpmf( 2.0, 10, 5, 12 );
    // returns NaN
    
    y = logpmf( 2.0, 8, 3, 9 );
    // returns NaN

    logpmf.factory( N, K, n )

    Returns a function for evaluating the natural logarithm of the probability mass function (PMF) of a hypergeometric distribution with parameters N (population size), K (subpopulation size), and n (number of draws).

    var mylogpmf = logpmf.factory( 30, 20, 5 );
    var y = mylogpmf( 4.0 );
    // returns ~-1.079
    
    y = mylogpmf( 1.0 );
    // returns ~-3.524

    Examples

    var randu = require( '@stdlib/random-base-randu' );
    var round = require( '@stdlib/math-base-special-round' );
    var logpmf = require( '@stdlib/stats-base-dists-hypergeometric-logpmf' );
    
    var i;
    var N;
    var K;
    var n;
    var x;
    var y;
    
    for ( i = 0; i < 10; i++ ) {
        x = round( randu() * 5.0 );
        N = round( randu() * 20.0 );
        K = round( randu() * N );
        n = round( randu() * N );
        y = logpmf( x, N, K, n );
        console.log( 'x: %d, N: %d, K: %d, n: %d, ln(P(X=x;N,K,n)): %d', x, N, K, n, y.toFixed( 4 ) );
    }

    Notice

    This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

    For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

    Community

    Chat


    Copyright

    Copyright © 2016-2022. The Stdlib Authors.

    Install

    npm i @stdlib/stats-base-dists-hypergeometric-logpmf

    Homepage

    stdlib.io

    DownloadsWeekly Downloads

    65

    Version

    0.0.7

    License

    Apache-2.0

    Unpacked Size

    60.4 kB

    Total Files

    11

    Last publish

    Collaborators

    • stdlib-bot
    • kgryte
    • planeshifter
    • rreusser