About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Fréchet distribution constructor.
npm install @stdlib/stats-base-dists-frechet-ctor
var Frechet = require( '@stdlib/stats-base-dists-frechet-ctor' );
Returns a Fréchet distribution object.
var frechet = new Frechet();
var mu = frechet.mean;
// returns Infinity
By default, alpha = 1.0
, s = 1.0
, and m = 0.0
. To create a distribution having a different alpha
(shape), s
(scale), and m
(location), provide the corresponding arguments.
var frechet = new Frechet( 2.0, 4.0, 3.5 );
var mu = frechet.mean;
// returns ~10.59
An Fréchet distribution object has the following properties and methods...
Shape parameter of the distribution. alpha
must be a positive number.
var frechet = new Frechet();
var alpha = frechet.alpha;
// returns 1.0
frechet.alpha = 0.5;
alpha = frechet.alpha;
// returns 0.5
Scale parameter of the distribution. s
must be a positive number.
var frechet = new Frechet( 2.0, 4.0, 1.5 );
var s = frechet.s;
// returns 4.0
frechet.s = 3.0;
s = frechet.s;
// returns 3.0
Location parameter of the distribution.
var frechet = new Frechet( 2.0, 2.0, 4.0 );
var m = frechet.m;
// returns 4.0
frechet.m = 3.0;
m = frechet.m;
// returns 3.0
Returns the differential entropy.
var frechet = new Frechet( 4.0, 12.0, 2.0 );
var entropy = frechet.entropy;
// returns ~2.82
Returns the excess kurtosis.
var frechet = new Frechet( 4.0, 12.0, 2.0 );
var kurtosis = frechet.kurtosis;
// returns Infinity
Returns the expected value.
var frechet = new Frechet( 4.0, 12.0, 2.0 );
var mu = frechet.mean;
// returns ~16.705
Returns the median.
var frechet = new Frechet( 4.0, 12.0, 2.0 );
var median = frechet.median;
// returns ~15.151
Returns the mode.
var frechet = new Frechet( 4.0, 12.0, 2.0 );
var mode = frechet.mode;
// returns ~13.349
Returns the skewness.
var frechet = new Frechet( 4.0, 12.0, 2.0 );
var skewness = frechet.skewness;
// returns ~5.605
Returns the standard deviation.
var frechet = new Frechet( 4.0, 12.0, 2.0 );
var s = frechet.stdev;
// returns ~6.245
Returns the variance.
var frechet = new Frechet( 4.0, 12.0, 2.0 );
var s2 = frechet.variance;
// returns ~38.996
Evaluates the cumulative distribution function (CDF).
var frechet = new Frechet( 2.0, 4.0, 3.0 );
var y = frechet.cdf( 2.5 );
// returns 0.0
Evaluates the natural logarithm of the cumulative distribution function (CDF).
var frechet = new Frechet( 2.0, 4.0, 3.0 );
var y = frechet.logcdf( 2.5 );
// returns -Infinity
Evaluates the natural logarithm of the probability density function (PDF).
var frechet = new Frechet( 2.0, 4.0, 3.0 );
var y = frechet.logpdf( 5.5 );
// returns ~-1.843
Evaluates the probability density function (PDF).
var frechet = new Frechet( 2.0, 4.0, 3.0 );
var y = frechet.pdf( 5.5 );
// returns ~0.158
Evaluates the quantile function at probability p
.
var frechet = new Frechet( 2.0, 4.0, 3.0 );
var y = frechet.quantile( 0.5 );
// returns ~7.804
y = frechet.quantile( 1.9 );
// returns NaN
var Frechet = require( '@stdlib/stats-base-dists-frechet-ctor' );
var frechet = new Frechet( 2.0, 4.0, 3.0 );
var mu = frechet.mean;
// returns ~10.09
var median = frechet.median;
// returns ~7.804
var s2 = frechet.variance;
// returns Infinity
var y = frechet.cdf( 2.5 );
// returns 0.0
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.