Noncollinear Perpendicular Microcrystalline

    @stdlib/stats-base-dists-binomial-skewness
    TypeScript icon, indicating that this package has built-in type declarations

    0.0.8 • Public • Published

    Skewness

    NPM version Build Status Coverage Status

    Binomial distribution skewness.

    The skewness for a binomial random variable is

    Skewness for a binomial distribution.

    where n is the number of trials and p is the success probability.

    Installation

    npm install @stdlib/stats-base-dists-binomial-skewness

    Usage

    var skewness = require( '@stdlib/stats-base-dists-binomial-skewness' );

    skewness( n, p )

    Returns the skewness of a binomial distribution with number of trials n and success probability p.

    var v = skewness( 20, 0.1 );
    // returns ~0.596
    
    v = skewness( 50, 0.5 );
    // returns 0

    If provided NaN as any argument, the function returns NaN.

    var v = skewness( NaN, 0.5 );
    // returns NaN
    
    v = skewness( 20, NaN );
    // returns NaN

    If provided a number of trials n which is not a nonnegative integer, the function returns NaN.

    var v = skewness( 1.5, 0.5 );
    // returns NaN
    
    v = skewness( -2.0, 0.5 );
    // returns NaN

    If provided a success probability p outside of [0,1], the function returns NaN.

    var v = skewness( 20, -1.0 );
    // returns NaN
    
    v = skewness( 20, 1.5 );
    // returns NaN

    Examples

    var randu = require( '@stdlib/random-base-randu' );
    var round = require( '@stdlib/math-base-special-round' );
    var skewness = require( '@stdlib/stats-base-dists-binomial-skewness' );
    
    var v;
    var i;
    var n;
    var p;
    
    for ( i = 0; i < 10; i++ ) {
        n = round( randu() * 100.0 );
        p = randu();
        v = skewness( n, p );
        console.log( 'n: %d, p: %d, skew(X;n,p): %d', n, p.toFixed( 4 ), v.toFixed( 4 ) );
    }

    Notice

    This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

    For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

    Community

    Chat


    License

    See LICENSE.

    Copyright

    Copyright © 2016-2022. The Stdlib Authors.

    Install

    npm i @stdlib/stats-base-dists-binomial-skewness

    Homepage

    stdlib.io

    DownloadsWeekly Downloads

    118

    Version

    0.0.8

    License

    Apache-2.0

    Unpacked Size

    34.8 kB

    Total Files

    10

    Last publish

    Collaborators

    • stdlib-bot
    • kgryte
    • planeshifter
    • rreusser