@stdlib/stats-base-dists-bernoulli-ctor
TypeScript icon, indicating that this package has built-in type declarations

0.2.1 • Public • Published
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

Bernoulli

NPM version Build Status Coverage Status

Bernoulli distribution constructor.

Installation

npm install @stdlib/stats-base-dists-bernoulli-ctor

Usage

var Bernoulli = require( '@stdlib/stats-base-dists-bernoulli-ctor' );

Bernoulli( [p] )

Returns a Bernoulli distribution object.

var bernoulli = new Bernoulli();

var mean = bernoulli.mean;
// returns 0.5

By default, p = 0.5. To create a distribution having a different success probability p, provide a parameter value.

var bernoulli = new Bernoulli( 0.2 );

var mean = bernoulli.mean;
// returns 0.2

bernoulli

A Bernoulli distribution object has the following properties and methods...

Writable Properties

bernoulli.p

Success probability of the distribution. p must be a probability.

var bernoulli = new Bernoulli( 0.2 );

var p = bernoulli.p;
// returns 0.2

bernoulli.p = 0.3;

p = bernoulli.p;
// returns 0.3

Computed Properties

Bernoulli.prototype.entropy

Returns the differential entropy.

var bernoulli = new Bernoulli( 0.4 );

var entropy = bernoulli.entropy;
// returns ~0.673

Bernoulli.prototype.kurtosis

Returns the excess kurtosis.

var bernoulli = new Bernoulli( 0.4 );

var kurtosis = bernoulli.kurtosis;
// returns ~-1.833

Bernoulli.prototype.mean

Returns the median.

var bernoulli = new Bernoulli( 0.4 );

var mu = bernoulli.mean;
// returns 0.4

Bernoulli.prototype.median

Returns the median.

var bernoulli = new Bernoulli( 0.4 );

var median = bernoulli.median;
// returns 0.0

Bernoulli.prototype.mode

Returns the mode.

var bernoulli = new Bernoulli( 0.4 );

var mode = bernoulli.mode;
// returns 0.0

Bernoulli.prototype.skewness

Returns the skewness.

var bernoulli = new Bernoulli( 0.4 );

var skewness = bernoulli.skewness;
// returns ~0.408

Bernoulli.prototype.stdev

Returns the standard deviation.

var bernoulli = new Bernoulli( 0.4 );

var s = bernoulli.stdev;
// returns ~0.49

Bernoulli.prototype.variance

Returns the variance.

var bernoulli = new Bernoulli( 0.4 );

var s2 = bernoulli.variance;
// returns 0.24

Methods

Bernoulli.prototype.cdf( x )

Evaluates the cumulative distribution function (CDF).

var bernoulli = new Bernoulli( 0.2 );

var y = bernoulli.cdf( 0.5 );
// returns 0.8

Bernoulli.prototype.mgf( t )

Evaluates the moment-generating function (MGF).

var bernoulli = new Bernoulli( 0.2 );

var y = bernoulli.mgf( -3.0 );
// returns ~0.81

Bernoulli.prototype.pmf( x )

Evaluates the probability mass function (PMF).

var bernoulli = new Bernoulli( 0.2 );

var y = bernoulli.pmf( 0.0 );
// returns 0.8

y = bernoulli.pmf( 1.0 );
// returns 0.2

Bernoulli.prototype.quantile( p )

Evaluates the quantile function at probability p.

var bernoulli = new Bernoulli( 0.2 );

var y = bernoulli.quantile( 0.5 );
// returns 0

y = bernoulli.quantile( 0.9 );
// returns 1

Examples

var Bernoulli = require( '@stdlib/stats-base-dists-bernoulli-ctor' );

var bernoulli = new Bernoulli( 0.5 );

var mu = bernoulli.mean;
// returns 0.5

var s2 = bernoulli.variance;
// returns 0.25

var y = bernoulli.cdf( 2.0 );
// returns 1.0

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.

Package Sidebar

Install

npm i @stdlib/stats-base-dists-bernoulli-ctor

Homepage

stdlib.io

Weekly Downloads

41

Version

0.2.1

License

Apache-2.0

Unpacked Size

50.7 kB

Total Files

11

Last publish

Collaborators

  • stdlib-bot
  • kgryte
  • planeshifter
  • rreusser