@stdlib/stats-base-cuminabs
TypeScript icon, indicating that this package has built-in type declarations

0.2.2 • Public • Published
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

cuminabs

NPM version Build Status Coverage Status

Calculate the cumulative minimum absolute value of a strided array.

Installation

npm install @stdlib/stats-base-cuminabs

Usage

var cuminabs = require( '@stdlib/stats-base-cuminabs' );

cuminabs( N, x, strideX, y, strideY )

Computes the cumulative minimum absolute value of a strided array.

var x = [ 1.0, -2.0, 2.0 ];
var y = [ 0.0, 0.0, 0.0 ];

cuminabs( x.length, x, 1, y, 1 );
// y => [ 1.0, 1.0, 1.0 ]

The function has the following parameters:

The N and stride parameters determine which elements in x and y are accessed at runtime. For example, to compute the cumulative minimum absolute value of every other element in x,

var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ];
var y = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ];

var v = cuminabs( 4, x, 2, y, 1 );
// y => [ 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array-float64' );

// Initial arrays...
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float64Array( x0.length );

// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element

cuminabs( 4, x1, -2, y1, 1 );
// y0 => <Float64Array>[ 0.0, 0.0, 0.0, 4.0, 2.0, 2.0, 1.0, 0.0 ]

cuminabs.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )

Computes the cumulative minimum absolute value of a strided array using alternative indexing semantics.

var x = [ 1.0, -2.0, 2.0 ];
var y = [ 0.0, 0.0, 0.0 ];

cuminabs.ndarray( x.length, x, 1, 0, y, 1, 0 );
// y => [ 1.0, 1.0, 1.0 ]

The function has the following additional parameters:

  • offsetX: starting index for x.
  • offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, offsetX and offsetY parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative minimum absolute value of every other value in x starting from the second value and to store in the last N elements of y starting from the last element

var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ];
var y = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ];

cuminabs.ndarray( 4, x, 2, 1, y, -1, y.length-1 );
// y => [ 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0 ]

Notes

  • If N <= 0, both functions return y unchanged.
  • Depending on the environment, the typed versions (dcuminabs, scuminabs, etc.) are likely to be significantly more performant.

Examples

var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var Float64Array = require( '@stdlib/array-float64' );
var cuminabs = require( '@stdlib/stats-base-cuminabs' );

var y;
var x;
var i;

x = new Float64Array( 10 );
y = new Float64Array( x.length );
for ( i = 0; i < x.length; i++ ) {
    x[ i ] = round( randu()*100.0 );
}
console.log( x );
console.log( y );

cuminabs( x.length, x, 1, y, -1 );
console.log( y );

See Also


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.

Package Sidebar

Install

npm i @stdlib/stats-base-cuminabs

Homepage

stdlib.io

Weekly Downloads

16

Version

0.2.2

License

Apache-2.0

Unpacked Size

42.2 kB

Total Files

13

Last publish

Collaborators

  • stdlib-bot
  • kgryte
  • planeshifter
  • rreusser