@stdlib/nlp-lda
    TypeScript icon, indicating that this package has built-in type declarations

    0.0.6 • Public • Published

    LDA

    NPM version Build Status Coverage Status dependencies

    Latent Dirichlet Allocation via collapsed Gibbs sampling.

    Installation

    npm install @stdlib/nlp-lda

    Usage

    var lda = require( '@stdlib/nlp-lda' );

    lda( docs, K[, options] )

    Latent Dirichlet Allocation via collapsed Gibbs sampling. To create a model, call the lda function by passing it an array of strings and the number of topics K that should be identified.

    var model;
    var docs;
    
    docs = [
        'I loved you first',
        'For one is both and both are one in love',
        'You never see my pain',
        'My love is such that rivers cannot quench',
        'See a lot of pain, a lot of tears'
    ];
    
    model = lda( docs, 2 );
    // returns {}

    After initialization, model parameters are estimated by calling the .fit() method, which performs collapsed Gibbs sampling.

    The model object contains the following methods:

    model.fit( iter, burnin, thin )

    model.fit( 1000, 100, 10 );

    The iter parameter denotes the number of sampling iterations. While a common choice, one thousand iterations might not always be appropriate. Empirical diagnostics can be used to assess whether the constructed Markov Chain has converged. burnin denotes the number of estimates that are thrown away at the beginning, whereas thin controls the number of estimates discarded in-between iterations.

    model.getTerms( k[, no = 10] )

    Returns the no terms with the highest probabilities for chosen topic k.

    var words = model.getTerms( 0, 3 );
    /* returns
        [
            { 'word': 'both', 'prob': 0.06315008476532499 },
            { 'word': 'pain', 'prob': 0.05515729517235543 },
            { 'word': 'one', 'prob': 0.05486669737616135 }
        ]
    */

    Examples

    var sotu = require( '@stdlib/datasets-sotu' );
    var roundn = require( '@stdlib/math-base-special-roundn' );
    var stopwords = require( '@stdlib/datasets-stopwords-en' );
    var lowercase = require( '@stdlib/string-lowercase' );
    var lda = require( '@stdlib/nlp-lda' );
    
    var speeches;
    var words;
    var terms;
    var model;
    var str;
    var i;
    var j;
    
    words = stopwords();
    for ( i = 0; i < words.length; i++ ) {
        words[ i ] = new RegExp( '\\b'+words[ i ]+'\\b', 'gi' );
    }
    
    speeches = sotu({
        'range': [ 1930, 2010 ]
    });
    for ( i = 0; i < speeches.length; i++ ) {
        str = lowercase( speeches[ i ].text );
        for ( j = 0; j < words.length; j++ ) {
            str = str.replace( words[ j ], '' );
        }
        speeches[ i ] = str;
    }
    
    model = lda( speeches, 3 );
    
    model.fit( 1000, 100, 10 );
    
    for ( i = 0; i <= 80; i++ ) {
        str = 'Year: ' + (1930+i) + '\t';
        str += 'Topic 1: ' + roundn( model.avgTheta.get( i, 0 ), -3 ) + '\t';
        str += 'Topic 2: ' + roundn( model.avgTheta.get( i, 1 ), -3 ) + '\t';
        str += 'Topic 3: ' + roundn( model.avgTheta.get( i, 2 ), -3 );
        console.log( str );
    }
    
    terms = model.getTerms( 0, 20 );
    for ( i = 0; i < terms.length; i++ ) {
        terms[ i ] = terms[ i ].word;
    }
    console.log( 'Words most associated with first topic:\n ' + terms.join( ', ' ) );
    
    terms = model.getTerms( 1, 20 );
    for ( i = 0; i < terms.length; i++ ) {
        terms[ i ] = terms[ i ].word;
    }
    console.log( 'Words most associated with second topic:\n ' + terms.join( ', ' ) );
    
    terms = model.getTerms( 2, 20 );
    for ( i = 0; i < terms.length; i++ ) {
        terms[ i ] = terms[ i ].word;
    }
    console.log( 'Words most associated with third topic:\n ' + terms.join( ', ' ) );

    Notice

    This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

    For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

    Community

    Chat


    License

    See LICENSE.

    Copyright

    Copyright © 2016-2021. The Stdlib Authors.

    Install

    npm i @stdlib/nlp-lda

    Homepage

    stdlib.io

    DownloadsWeekly Downloads

    8

    Version

    0.0.6

    License

    Apache-2.0

    Unpacked Size

    61.8 kB

    Total Files

    15

    Last publish

    Collaborators

    • stdlib-bot
    • kgryte
    • planeshifter
    • rreusser