# @stdlib/math-strided-special-smsksqrt 0.1.1 • Public • Published

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

# smsksqrt

Compute the principal square root for each element in a single-precision floating-point strided array according to a strided mask array.

## Installation

`npm install @stdlib/math-strided-special-smsksqrt`

## Usage

`var smsksqrt = require( '@stdlib/math-strided-special-smsksqrt' );`

#### smsksqrt( N, x, sx, m, sm, y, sy )

Computes the principal square root for each element in a single-precision floating-point strided array `x` according to a strided mask array and assigns the results to elements in a single-precision floating-point strided array `y`.

```var Float32Array = require( '@stdlib/array-float32' );
var Uint8Array = require( '@stdlib/array-uint8' );

var x = new Float32Array( [ 0.0, 4.0, 9.0, 12.0, 24.0 ] );
var m = new Uint8Array( [ 0, 0, 1, 0, 1 ] );
var y = new Float32Array( x.length );

smsksqrt( x.length, x, 1, m, 1, y, 1 );
// y => <Float32Array>[ 0.0, 2.0, 0.0, ~3.464, 0.0 ]```

The function accepts the following arguments:

The `N` and stride parameters determine which strided array elements are accessed at runtime. For example, to index every other value in `x` and to index the first `N` elements of `y` in reverse order,

```var Float32Array = require( '@stdlib/array-float32' );
var Uint8Array = require( '@stdlib/array-uint8' );

var x = new Float32Array( [ 0.0, 4.0, 9.0, 12.0, 24.0, 64.0 ] );
var m = new Uint8Array( [ 0, 0, 1, 0, 1, 1 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

smsksqrt( 3, x, 2, m, 2, y, -1 );
// y => <Float32Array>[ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]```

Note that indexing is relative to the first index. To introduce an offset, use `typed array` views.

```var Float32Array = require( '@stdlib/array-float32' );
var Uint8Array = require( '@stdlib/array-uint8' );

// Initial arrays...
var x0 = new Float32Array( [ 0.0, 4.0, 9.0, 12.0, 24.0, 64.0 ] );
var m0 = new Uint8Array( [ 0, 0, 1, 0, 1, 1 ] );
var y0 = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

// Create offset views...
var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var m1 = new Uint8Array( m0.buffer, m0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float32Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element

smsksqrt( 3, x1, -2, m1, -2, y1, 1 );
// y0 => <Float32Array>[ 0.0, 0.0, 0.0, 0.0, ~3.464, 2.0 ]```

#### smsksqrt.ndarray( N, x, sx, ox, m, sm, om, y, sy, oy )

Computes the principal square root for each element in a single-precision floating-point strided array `x` according to a strided mask array and assigns the results to elements in a single-precision floating-point strided array `y` using alternative indexing semantics.

```var Float32Array = require( '@stdlib/array-float32' );
var Uint8Array = require( '@stdlib/array-uint8' );

var x = new Float32Array( [ 0.0, 4.0, 9.0, 12.0, 24.0 ] );
var m = new Uint8Array( [ 0, 0, 1, 0, 1 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] );

smsksqrt.ndarray( x.length, x, 1, 0, m, 1, 0, y, 1, 0 );
// y => <Float32Array>[ 0.0, 2.0, 0.0, ~3.464, 0.0 ]```

The function accepts the following additional arguments:

• ox: starting index for `x`.
• om: starting index for `m`.
• oy: starting index for `y`.

While `typed array` views mandate a view offset based on the underlying `buffer`, the offset parameters support indexing semantics based on starting indices. For example, to index every other value in `x` starting from the second value and to index the last `N` elements in `y`,

```var Float32Array = require( '@stdlib/array-float32' );
var Uint8Array = require( '@stdlib/array-uint8' );

var x = new Float32Array( [ 0.0, 4.0, 9.0, 12.0, 24.0, 64.0 ] );
var m = new Uint8Array( [ 0, 0, 1, 0, 1, 1 ] );
var y = new Float32Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );

smsksqrt.ndarray( 3, x, 2, 1, m, 2, 1, y, -1, y.length-1 );
// y => <Float32Array>[ 0.0, 0.0, 0.0, 0.0, ~3.464, 2.0 ]```

## Examples

```var uniform = require( '@stdlib/random-base-uniform' );
var Float32Array = require( '@stdlib/array-float32' );
var Uint8Array = require( '@stdlib/array-uint8' );
var smsksqrt = require( '@stdlib/math-strided-special-smsksqrt' );

var x = new Float32Array( 10 );
var m = new Uint8Array( 10 );
var y = new Float32Array( 10 );

var i;
for ( i = 0; i < x.length; i++ ) {
x[ i ] = uniform( 0.0, 200.0 );
if ( uniform( 0.0, 1.0 ) < 0.5 ) {
m[ i ] = 1;
}
}
console.log( x );
console.log( m );
console.log( y );

smsksqrt.ndarray( x.length, x, 1, 0, m, 1, 0, y, -1, y.length-1 );
console.log( y );```

## C APIs

### Usage

`#include "stdlib/math/strided/special/smsksqrt.h"`

Computes the principal square root for each element in a single-precision floating-point strided array `X` according to a strided mask array and assigns the results to elements in a single-precision floating-point strided array `Y`.

```#include <stdint.h>

float X[] = { 0.0, 4.0, 9.0, 12.0, 24.0, 64.0, 81.0, 101.0 };
uint8_t Mask[] = { 0, 0, 1, 0, 1, 1, 0, 0 };
float Y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };

int64_t N = 4;

stdlib_strided_smsksqrt( N, X, 2, Mask, 2, Y, 2 );```

The function accepts the following arguments:

• N: `[in] int64_t` number of indexed elements.
• X: `[in] float*` input array.
• strideX: `[in] int64_t` index increment for `X`.
• Mask: `[in] uint8_t*` mask array.
• strideMask: `[in] int64_t` index increment for `Mask`.
• Y: `[out] float*` output array.
• strideY: `[in] int64_t` index increment for `Y`.
`void stdlib_strided_smsksqrt( const int64_t N, const float *X, const int64_t strideX, const uint8_t *Mask, const int64_t strideMask, float *Y, const int64_t strideY );`

### Examples

```#include "stdlib/math/strided/special/smsksqrt.h"
#include <stdint.h>
#include <stdio.h>

int main( void ) {
// Create an input strided array:
float X[] = { 0.0, 4.0, 9.0, 12.0, 24.0, 64.0, 81.0, 101.0 };

// Create a mask strided array:
uint8_t M[] = { 0, 0, 1, 0, 1, 1, 0, 0 };

// Create an output strided array:
float Y[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };

// Specify the number of elements:
int64_t N = 4;

// Specify the stride lengths:
int64_t strideX = 2;
int64_t strideM = 2;
int64_t strideY = 2;

// Compute the results:
stdlib_strided_smsksqrt( N, X, strideX, M, strideM, Y, strideY );

// Print the results:
for ( int i = 0; i < 8; i++ ) {
printf( "Y[ %i ] = %f\n", i, Y[ i ] );
}
}```

## Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

#### Community ## Package Sidebar

### Install

`npm i @stdlib/math-strided-special-smsksqrt`

stdlib.io

21

0.1.1

Apache-2.0

62.9 kB

21