Never Perfectly Managed

    @stdlib/blas-ext-base-gcusumpw
    TypeScript icon, indicating that this package has built-in type declarations

    0.0.10 • Public • Published

    gcusumpw

    NPM version Build Status Coverage Status

    Calculate the cumulative sum of strided array elements using pairwise summation.

    Installation

    npm install @stdlib/blas-ext-base-gcusumpw

    Usage

    var gcusumpw = require( '@stdlib/blas-ext-base-gcusumpw' );

    gcusumpw( N, sum, x, strideX, y, strideY )

    Computes the cumulative sum of strided array elements using pairwise summation.

    var x = [ 1.0, -2.0, 2.0 ];
    var y = [ 0.0, 0.0, 0.0 ];
    
    gcusumpw( x.length, 0.0, x, 1, y, 1 );
    // y => [ 1.0, -1.0, 1.0 ]
    
    x = [ 1.0, -2.0, 2.0 ];
    y = [ 0.0, 0.0, 0.0 ];
    
    gcusumpw( x.length, 10.0, x, 1, y, 1 );
    // y => [ 11.0, 9.0, 11.0 ]

    The function has the following parameters:

    • N: number of indexed elements.
    • sum: initial sum.
    • x: input Array or typed array.
    • strideX: index increment for x.
    • y: output Array or typed array.
    • strideY: index increment for y.

    The N and stride parameters determine which elements in x and y are accessed at runtime. For example, to compute the cumulative sum of every other element in x,

    var floor = require( '@stdlib/math-base-special-floor' );
    
    var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ];
    var y = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ];
    
    var N = floor( x.length / 2 );
    
    var v = gcusumpw( N, 0.0, x, 2, y, 1 );
    // y => [ 1.0, 3.0, 1.0, 5.0, 0.0, 0.0, 0.0, 0.0 ]

    Note that indexing is relative to the first index. To introduce an offset, use typed array views.

    var Float64Array = require( '@stdlib/array-float64' );
    var floor = require( '@stdlib/math-base-special-floor' );
    
    // Initial arrays...
    var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
    var y0 = new Float64Array( x0.length );
    
    // Create offset views...
    var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
    var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
    
    var N = floor( x0.length / 2 );
    
    gcusumpw( N, 0.0, x1, -2, y1, 1 );
    // y0 => <Float64Array>[ 0.0, 0.0, 0.0, 4.0, 6.0, 4.0, 5.0, 0.0 ]

    gcusumpw.ndarray( N, sum, x, strideX, offsetX, y, strideY, offsetY )

    Computes the cumulative sum of strided array elements using pairwise summation and alternative indexing semantics.

    var x = [ 1.0, -2.0, 2.0 ];
    var y = [ 0.0, 0.0, 0.0 ];
    
    gcusumpw.ndarray( x.length, 0.0, x, 1, 0, y, 1, 0 );
    // y => [ 1.0, -1.0, 1.0 ]

    The function has the following additional parameters:

    • offsetX: starting index for x.
    • offsetY: starting index for y.

    While typed array views mandate a view offset based on the underlying buffer, offsetX and offsetY parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative sum of every other value in x starting from the second value and to store in the last N elements of y starting from the last element

    var floor = require( '@stdlib/math-base-special-floor' );
    
    var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ];
    var y = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ];
    
    var N = floor( x.length / 2 );
    
    gcusumpw.ndarray( N, 0.0, x, 2, 1, y, -1, y.length-1 );
    // y => [ 0.0, 0.0, 0.0, 0.0, 5.0, 1.0, -1.0, 1.0 ]

    Notes

    • If N <= 0, both functions return y unchanged.
    • In general, pairwise summation is more numerically stable than ordinary recursive summation (i.e., "simple" summation), with slightly worse performance. While not the most numerically stable summation technique (e.g., compensated summation techniques such as the Kahan–Babuška-Neumaier algorithm are generally more numerically stable), pairwise summation strikes a reasonable balance between numerical stability and performance. If either numerical stability or performance is more desirable for your use case, consider alternative summation techniques.
    • Depending on the environment, the typed versions (dcusumpw, scusumpw, etc.) are likely to be significantly more performant.

    Examples

    var randu = require( '@stdlib/random-base-randu' );
    var round = require( '@stdlib/math-base-special-round' );
    var Float64Array = require( '@stdlib/array-float64' );
    var gcusumpw = require( '@stdlib/blas-ext-base-gcusumpw' );
    
    var y;
    var x;
    var i;
    
    x = new Float64Array( 10 );
    y = new Float64Array( x.length );
    for ( i = 0; i < x.length; i++ ) {
        x[ i ] = round( randu()*100.0 );
    }
    console.log( x );
    console.log( y );
    
    gcusumpw( x.length, 0.0, x, 1, y, -1 );
    console.log( y );

    References

    • Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." SIAM Journal on Scientific Computing 14 (4): 783–99. doi:10.1137/0914050.

    See Also


    Notice

    This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

    For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

    Community

    Chat


    License

    See LICENSE.

    Copyright

    Copyright © 2016-2022. The Stdlib Authors.

    Install

    npm i @stdlib/blas-ext-base-gcusumpw

    Homepage

    stdlib.io

    DownloadsWeekly Downloads

    48

    Version

    0.0.10

    License

    Apache-2.0

    Unpacked Size

    48 kB

    Total Files

    10

    Last publish

    Collaborators

    • stdlib-bot
    • kgryte
    • planeshifter
    • rreusser