# @stdlib/blas-ext-base-gcusumors

0.2.1 • Public • Published

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

# gcusumors

Calculate the cumulative sum of strided array elements using ordinary recursive summation.

## Installation

npm install @stdlib/blas-ext-base-gcusumors

## Usage

var gcusumors = require( '@stdlib/blas-ext-base-gcusumors' );

#### gcusumors( N, sum, x, strideX, y, strideY )

Computes the cumulative sum of strided array elements using ordinary recursive summation.

var x = [ 1.0, -2.0, 2.0 ];
var y = [ 0.0, 0.0, 0.0 ];

gcusumors( x.length, 0.0, x, 1, y, 1 );
// y => [ 1.0, -1.0, 1.0 ]

x = [ 1.0, -2.0, 2.0 ];
y = [ 0.0, 0.0, 0.0 ];

gcusumors( x.length, 10.0, x, 1, y, 1 );
// y => [ 11.0, 9.0, 11.0 ]

The function has the following parameters:

The N and stride parameters determine which elements in x and y are accessed at runtime. For example, to compute the cumulative sum of every other element in x,

var floor = require( '@stdlib/math-base-special-floor' );

var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ];
var y = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ];

var N = floor( x.length / 2 );

var v = gcusumors( N, 0.0, x, 2, y, 1 );
// y => [ 1.0, 3.0, 1.0, 5.0, 0.0, 0.0, 0.0, 0.0 ]

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

var Float64Array = require( '@stdlib/array-float64' );
var floor = require( '@stdlib/math-base-special-floor' );

// Initial arrays...
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var y0 = new Float64Array( x0.length );

// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element

var N = floor( x0.length / 2 );

gcusumors( N, 0.0, x1, -2, y1, 1 );
// y0 => <Float64Array>[ 0.0, 0.0, 0.0, 4.0, 6.0, 4.0, 5.0, 0.0 ]

#### gcusumors.ndarray( N, sum, x, strideX, offsetX, y, strideY, offsetY )

Computes the cumulative sum of strided array elements using ordinary recursive summation and alternative indexing semantics.

var x = [ 1.0, -2.0, 2.0 ];
var y = [ 0.0, 0.0, 0.0 ];

gcusumors.ndarray( x.length, 0.0, x, 1, 0, y, 1, 0 );
// y => [ 1.0, -1.0, 1.0 ]

The function has the following additional parameters:

• offsetX: starting index for x.
• offsetY: starting index for y.

While typed array views mandate a view offset based on the underlying buffer, offsetX and offsetY parameters support indexing semantics based on a starting indices. For example, to calculate the cumulative sum of every other value in x starting from the second value and to store in the last N elements of y starting from the last element

var floor = require( '@stdlib/math-base-special-floor' );

var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ];
var y = [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ];

var N = floor( x.length / 2 );

gcusumors.ndarray( N, 0.0, x, 2, 1, y, -1, y.length-1 );
// y => [ 0.0, 0.0, 0.0, 0.0, 5.0, 1.0, -1.0, 1.0 ]

## Notes

• If N <= 0, both functions return y unchanged.
• Ordinary recursive summation (i.e., a "simple" sum) is performant, but can incur significant numerical error. If performance is paramount and error tolerated, using ordinary recursive summation is acceptable; in all other cases, exercise due caution.
• Depending on the environment, the typed versions (dcusumors, scusumors, etc.) are likely to be significantly more performant.

## Examples

var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var Float64Array = require( '@stdlib/array-float64' );
var gcusumors = require( '@stdlib/blas-ext-base-gcusumors' );

var y;
var x;
var i;

x = new Float64Array( 10 );
y = new Float64Array( x.length );
for ( i = 0; i < x.length; i++ ) {
x[ i ] = round( randu()*100.0 );
}
console.log( x );
console.log( y );

gcusumors( x.length, 0.0, x, 1, y, -1 );
console.log( y );

## Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

## Package Sidebar

### Install

npm i @stdlib/blas-ext-base-gcusumors

### Repository

github.com/stdlib-js/blas-ext-base-gcusumors

stdlib.io

19

0.2.1

Apache-2.0

38.7 kB

12